Affiliation:
1. Department of Mechanical Engineering, The University of Auckland, Auckland, New Zealand
Abstract
Traditionally, metal cutting fluid or lubricant is used in finishing operations of high-speed machining process to reduce the rate of tool wear, which in turn will improve surface quality. In automobile and aerospace industries, minimum quantity lubrication technique is considered to provide the same level of performance as the flood coolant method and offers financial benefits by saving coolant direct and associated costs. However, scant research work has been done on minimum quantity lubrication applications in the die and mould manufacturing industry. In this study, the effects of dry, flood and minimum quantity lubrication machining on surface roughness, tool wear, dimensional accuracy and machining time of hardened steel mould inserts were compared. The results revealed that there were no significant differences between these three lubrication methods. More in-depth experimental study of dry and minimum quantity lubrication machining was then carried out using the design of experiments technique. In terms of surface roughness and tool wear, there were again no significant differences. Nevertheless, minimum quantity lubrication machining produced more accurate results than dry machining in dimensional deviation. The regression models show that feed-rate ( fz) has a larger effect on surface roughness and machining time than step-over ( ae), while depth of cut ( ap) has no significant effect on surface roughness. Based on the test piece shape, a shortest possible machining time of 3.55 h and a good surface finish of 0.28 µm can be achieved using a small feed-rate (0.03 mm/tooth), a large step-over (0.1 mm) and a large depth of cut (0.2 mm). This work shows that when combining the minimum quantity lubrication technique with the right cutting conditions in modern die and mould manufacturing, machining time and polishing time can be saved, which leads to an overall saving in production cost. Using the dry and minimum quantity lubrication techniques for different finish machining situations can therefore be a good economical solution.
Subject
Industrial and Manufacturing Engineering,Mechanical Engineering
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献