Cleaning of Silicon Surfaces for Nanotechnology

Author:

Senftleben Oliver1,Baumgärtner Hermann1,Eisele Ignaz1

Affiliation:

1. Universität der Bundeswehr München

Abstract

An overview of various cleaning procedures for silicon surfaces is presented. Because in-situ cleaning becomes more and more important for nanotechnology the paper concentrates on physical and dry chemical techniques. As standard ex-situ wet chemical cleaning has a significant impact on surface quality und thus device properties, its influence on further processes is also considered. Oxygen and carbon are unavoidable contaminations after wet chemical treatment and therefore we discuss their in-situ removal as one of the main goals of modern silicon substrate cleaning. As surface roughness strongly influences the electrical quality of interfaces for epitaxy and dielectric growth, we concentrate on techniques, which meet this requirement. It will be shown that multi-step thermal sequences in combination with simultaneous passivation of the clean surface are necessary in order to avoid recontamination. This can be achieved not only for ultra hich vacuum but also for inert gas atmosphere. In this case the process gases have to be extremely purified and the residual partial pressure of contaminats such as oxygen and carbon has to be negligible. It will be demonstrated that 800°C is an upper limit for thermal treatment of silicon surfaces in the presence of carbon because at this temperature SiC formation in combination with a high mobility of silicon monomers leads to surface roughness. In addition mechanical stress causes dislocations and crystal defects.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3