Affiliation:
1. Università di Bologna
2. Consiglio Nazionale delle Ricerche (CNR)
3. CNR-IMM
4. CNR-IMM Sezione di Bologna
Abstract
The surface morphology and the electrical activation of P+ implanted 4H-SiC were investigated with respect to annealing treatments that differ only for the heating rate. P+ implantation was carried out in lightly doped n-type epitaxial layers. The implantation temperature was 300 °C. The computed P profile was 250 nm thick with a concentration of 1×1020 cm-3. Two samples underwent annealing at 1400 °C in argon with different constant ramp up rates equal to 0.05° C/s and 40 °C/s. A third sample underwent an incoherent light Rapid Thermal Annealing (RTA) at 1100 °C in argon before the annealing at 1400 °C with the lower ramp rate. The ramp up of the RTA process is a few hundred degrees per second. Atomic Force Microscopy (AFM) micrographs pointed out that the surface roughness of the samples annealed at 1400 °C increases with increasing heating rate and that the critical temperature for surface roughening is above 1100 °C. Independently on the annealing cycle, Scanning Capacitance Microscopy (SCM) measurements showed that the P profiles are uniform over the implantation thickness and have plateau concentration around 9×1018 cm-3 in all the implanted samples. The fraction of P atoms activated as donors is 13% of the total implanted fluence.
Publisher
Trans Tech Publications, Ltd.
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献