Affiliation:
1. National Yunlin University of Science and Technology
2. Advanced Chip Engineering Technology Inc.
Abstract
Nonlinear finite element analysis is performed to evaluate the reliability of the solder
joint of wafer level chip scale package (WLCSP) under accelerated temperature cycling test. The solder joint is subjected to the inelastic strain that is generated during the temperature cycling test due to the thermal expansion mismatch between the various materials of the package and PCB (printed circuit board). The equivalent stress, equivalent inelastic strain, total shear strain, and hysteresis loop of the solder joint are determined in the simulation. The equivalent inelastic strain
and total shear strain range of the joint are obtained as damage criterion to predict the solder fatigue. Both Coffin-Manson and Modified Coffin-Manson fatigue life prediction models are used to estimate the thermal fatigue life of WLCSP solder joints under temperature cycling test. Also, the effects of the material properties of the stress buffer layer (SBL) on the fatigue life of the solder joint are discussed.
Publisher
Trans Tech Publications, Ltd.
Subject
Mechanical Engineering,Mechanics of Materials,General Materials Science