Impact of Channel Implantation on a 4H-SiC CMOS Operational Amplifier for High Temperature Applications

Author:

Albrecht Matthaeus1,Pérez David1,Martens R. Christian1,Bauer Anton J.2,Erlbacher Tobias2ORCID

Affiliation:

1. Univ. of Erlangen-Nuremberg

2. Fraunhofer Institute for Integrated Systems and Device Technology (IISB)

Abstract

In this work, the impact of channel implantations (IMP) on the electrical characteristics of SiC n-and p-MOSFETs and analog SiC-CMOS operational amplifiers (OpAmp) is investigated. For this purpose, MOSFETs and Miller OpAmps with and without IMP were fabricated and electrically characterized from room temperature up to 350°C. For devices with IMP the absolute values of the threshold voltages of n-and p-MOSFETs were reduced by 1.5 V and the mobility of the n-MOSFET was increased from 13 to 23 cm2/Vs whereas the mobility of the p-MOSFET remained constant at 6 cm2/Vs. For the resulting OpAmp with IMP, the common-mode input voltage range as well as the open loop gain was increased by 1.5 V and 4 dB compared to non-implanted devices. This improvement was observed across the entire analyzed temperature range from room temperature up to 350°C.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Fabrication of the SiC Gate-All-Around JFET;IEEE Transactions on Electron Devices;2023-09

2. 4H-SiC integrated circuits for high-temperature applications;Journal of Crystal Growth;2023-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3