Prospects of Bulk Growth of 3C-SiC Using Sublimation Growth

Author:

Wellmann Peter J.1,Schuh Philipp1,Kollmuss Manuel1,Schöler Michael1ORCID,Steiner Johannes1ORCID,Zielinski Marcin2ORCID,Mauceri Marco3,La Via Francesco4

Affiliation:

1. University of Erlangen

2. NOVASiC

3. LPE, XVI Strada

4. Istituto per la Microelettronica e Microsistemi IMM-CNR

Abstract

Free standing 3C-SiC wafers with a dimeter of 50 mm and a thickness of ca. 0.8 mm have been grown on a regular base using 3C-SiC CVD seed transfer from Si wafers to a poly-SiC-carrier and a sublimation epitaxy configuration. Up to the thickness of almost 1 mm, stable growth conditions of the cubic polytype have been achieved. The high supersaturation was kept stable by the proper design of the hot zone that enables a high axial temperature gradient at the growth interface. The Sirich gas phase was realized by the application of a Tantalum getter that was integrated into the graphitebased growth cell. Furthermore, an adaption of the growth setup allowed the growth of 3C material with a diameter of 95 mm and bulk material up to 3 mm on 25 mm diameter. Computer simulations were used to determine the supersaturation of the growth setup for different source-to-seed distances. The minimum supersaturation necessary for stable growth of cubic SiC was found to be higher 0.1 for seed already containing the required 3C polytype.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3