Carbon Nanotube Interconnects with Air-Gaps: Effect on Thermal Stability, Delay and Area

Author:

Uma Sathyakam P.1ORCID,Mallick Partha S.1

Affiliation:

1. VIT University

Abstract

This paper presents single walled carbon nanotube (SWCNT) interconnects with air as dielectric medium. We treat CNT interconnects as a discrete (fractal) media for the first time where continuum based differential equations fail to capture the physics at nanoscale and hence, we use discrete partial differential equations in this work. We have analyzed the effect of air gaps (AG) on performance factors like temperature dependent resistance R(T) of CNTs and hence the R(T)C delay of the interconnects. We have first calculated the temperature coefficient of resistance (TCR) of CNTs and analyzed the trend of changing resistance at different ambient temperatures. The R(T)C delay shows that CNT/AG interconnects can operate satisfactorily up to 500K. We then compare the R(T)C delay with ITRS predictions from 17nm to 8nm technology nodes. We have also calculated the chip area used by CNT/air-gap interconnects and found that they take up to 83% lesser area than the conventional Cu/low-k interconnects.

Publisher

Trans Tech Publications, Ltd.

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Optimal segmentation of Cu–CNT interconnects;Multiscale and Multidisciplinary Modeling, Experiments and Design;2024-04-10

2. Repeater Insertion for Carbon Nanotube Interconnects;Interconnect Technologies for Integrated Circuits and Flexible Electronics;2023-09-22

3. Frequency response analysis of CNT bundle interconnects;International Journal of Electronics Letters;2022-09-02

4. Waveform analysis of carbon nanotube interconnects connected to various driver/load circuits;International Journal of Electronics;2021-01-20

5. Performance Analysis of Square and Triangular CNT Bundle Interconnects Driven by CNTFET-Based Inverters;Micro-Electronics and Telecommunication Engineering;2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3