Effects of Material Property and Structural Design on the Stress Reduction of the Joints in Electronics Devices

Author:

Matsushima Michiya1,Nakashima Noriyasu1,Fujimoto Takashi1,Fukumoto Shinji2,Fujimoto Kozo1

Affiliation:

1. Osaka University

2. University of Hyogo

Abstract

Electronics devices consist of silicon chips, copper leads, substrates and other parts which are jointed to each other with solder, conductive adhesive or other materials. Each coefficient of thermal expansion is different and it causes strain concentrations and cracks. We analytically investigated the stress reduction structure at the edge of the joints such as Sn-Ag-Cu solder or Cu/Sn alloy between the silicon chip and copper lead. At first, we examined the influence of the joint thickness and fillet at the joint edge on the stress. In the joint without fillet, the stress at the end of the joint increased depending on the thickness of the joint. The fillet of the joint increased the stress of the Cu/Sn alloy joint and the stress was increased depending on the thickness, though the fillet decreased the stress of the solder joint. We suggested the copper lead with slits to reduce the force of constraint. We compared the effects of the structure parameters of the slits on the stress reduction. The height was a more effective parameter than the width and the pitch. In the case of solder joint, the slits of the copper lead reduce the stress more effective in the thick joint than the thin joint. However, in the case of Cu3Sn joints, the slits reduced the stress more effectively in the thin joint than thick joint.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3