Microplasma Pretreatment f Mango Fruits During Freeze Drying with Thermoelectric Emission

Author:

Sosnin Maxim1,Shorstkii Ivan1

Affiliation:

1. Kuban State Technological University

Abstract

Introduction. The research objective was to study the effect of filamentous microplasma pretreatment on the efficiency of freeze drying. It featured mango fruit and assessed the quality of the dried product. Year-round availability of exotic fruit poses a challenge of providing consumers with high-quality food products. Freeze-drying, if combined with advanced electrophysical technologies, makes it possible to maintain the high quality of the product while improving the processing. This non-thermal method technology presupposes pretreatment with filamentous microplasma (FM) and thermoelectric emission. FM affects the membrane of plant cells and forms a through channel, thus improving mass transfer. Study objects and methods. Before freeze-drying, fresh mango fruit was cut into slices of 6.0 ± 0.5 mm each and the average diameter of 72 ± 3 mm. Freeze-dried fruits were analyzed according to the degree of rehydration and quality. FM treatment was performed at the electric field strength E = 600 kV/m, while the specific energy was 1 kJ/kg per unit. Results and discussion. FM pretreatment with thermoelectric emission reduced the drying time by 38%, which was enough to achieve equilibrium moisture content. It also increased the degree of rehydration from 2.58 to 3.14. FM pretreatment raised the total content of phenols and carotenoids, but reduced the total content of flavonoids. FM pretreatment also affected the antioxidant capacity, reducing it from 0.43 to 0.41 by the ABTS method and from 0.90 to 0.75 by the DPPH method. Conclusion. FM pretreatment increased the ability to restore the freeze-dried samples. The mango samples preserved the high content of phenols and carotenoids. The antioxidant capacity of the FM-treated samples proved to be slightly lower than in the control samples. In general, pretreatment with filamentous microplasma and thermoelectric emission had a positive effect on the quality of freeze-dried mango, reduced the processing time, and improved the rehydration characteristics of the final product.

Publisher

Kemerovo State University

Subject

Industrial and Manufacturing Engineering,Economics, Econometrics and Finance (miscellaneous),Food Science

Reference22 articles.

1. Mango production worldwide from 2000 to 2016 (in million metric tons) [Internet]. – Available from: https://www.statista.com/statistics/577951/world-mango-production. – Date of application: 02.10.2020., Mango production worldwide from 2000 to 2016 (in million metric tons) [Internet]. [cited 2020 Oct 02]. Available from: https://www.statista.com/statistics/577951/world-mango-production.

2. Izli, N. Influence of different drying techniques on drying parameters of mango / N. Izli, G. Izli, O. Taskin // Food Science and Technology. – 2017. – Vol. 37, № 4. – P. 604–612. https://doi.org/10.1590/1678-457x.28316., Izli N, Izli G, Taskin O. Influence of different drying techniques on drying parameters of mango. Food Science and Technology. 2017;37(4):604–612. https://doi.org/10.1590/1678-457x.28316.

3. Influence of dual-stage sugar substitution pretreatment on drying kinetics and quality parameters of mango / R. A. B. de Medeiros, Z. M. P. Barros, C. B. O. de Carvalho [et al.] // LWT – Food Science and Technology. – 2016. – Vol. 67. – P. 167–173. https://doi.org/10.1016/j.lwt.2015.11.049., de Medeiros RAB, Barros ZMP, de Carvalho CBO, Neta EGF, Maciel MIS, Azoubel PM. Influence of dual-stage sugar substitution pretreatment on drying kinetics and quality parameters of mango. LWT – Food Science and Technology. 2016;67:167–173. https://doi.org/10.1016/j.lwt.2015.11.049.

4. Мякинникова, Е. И. Использование электрофизических и газожидкостных технологий для сушки плодового сырья / Е. И. Мякинникова, Г. И. Касьянов // Техника и технология пищевых производств. – 2015. – Т. 37, № 2. – C. 48–53., Myakinnikova EI, Kasyanov GI. Application of electrophysical and gas-liquid technologies for drying of fruit raw material. Food Processing: Techniques and Technology. 2015;37(2):48–53. (In Russ.).

5. Aghbashlo, M. Computer vision technology for real-time food quality assurance during drying process / M. Aghbashlo, S. Hosseinpour, M. Ghasemi-Varnamkhasti // Trends in Food Science and Technology. – 2014. – Vol. 39, № 1. – P. 76–84. https://doi.org/10.1016/j.tifs.2014.06.003., Aghbashlo M, Hosseinpour S, Ghasemi-Varnamkhasti M. Computer vision technology for real-time food quality assurance during drying process. Trends in Food Science and Technology. 2014;39(1):76–84. https://doi.org/10.1016/j.tifs.2014.06.003.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3