Clonal Micropropagation and Peculiarities of Adaptation to ex vitro Conditions of Forest Berry Plants of the Genus Vaccinium

Author:

Chudetsky Anton1,Rodin Sergey1,Zarubina Lilia2,Kuznetsova Irina3,Tyak Galina1

Affiliation:

1. All-Russian Research Institute for Silviculture and Mechanization of Forestry

2. N.V. Vereshchagin Vologda State Dairy Farming Academy

3. Kostroma State Agricultural Academy

Abstract

Modern cost-effective propagation methods yield a large amount of high-quality healthy planting material of economically valuable forest berry plants. However, ex vitro adaptation of Vaccinium species and in vitro cultivation of the Kamchatka bilberry remain understudied. The research objective was to study the effect of growth-regulating substances on the organogenesis and adaptation to non-sterile conditions of the lingonberry and the Kamchatka bilberry during clonal micropropagation. The study featured regenerant lingonberries (Vaccinium vitis-idaea L.) of Koralle, Kostromichka, and Kostromskaya Rozovaya cultivars, as well as the Sakhalin and Kuril varieties of the Kamchatka bilberry (Vaccinium praestans Lamb.). A chemical analysis was performed to reveal the following dependencies: the effect of sterilizing agents and sterilization time on the viability of explants, the effect of the nutrient medium and the growth-regulating substances on microshoots and roots, and the effect of the substrate on the survival of plants in non-sterile conditions. The highest survival rate of lingonberry (72%) and bilberry (96%) explants belonged to 0.2% of AgNO3 with 10 min of sterilization time. The maximal values of the total shoot length in vitro were observed at 0.2 mg/L of 2-iP: AN nutrient medium (7.2 cm) for lingonberries and WPM 1/2 nutrient medium (10.5 cm) for bilberries. The longest total root length in vitro for lingonberries was registered when using 2.0 mg/L (5.8 cm) of indoleacetic acid, while for bilberries it was 1.0 mg/L (1.9 cm) of indolylbutyric acid. The maximal survival rate ex vitro belonged to the high-moor peat substrate (89–92%) for lingonberries and a 1:1 mix of peat with sand (91–95%) for bilb erries. Clonal micropropagation with growth regulators (2-iP, indolylbutyric and indoleacetic acids) and peat substrates proved expedient for in vitro cultivation and ex vitro adaptation of the lingonberry and the Kamchatka bilberry. This scheme delivered a large amount of high-quality planting material with high plant survival.

Publisher

Kemerovo State University

Subject

Industrial and Manufacturing Engineering,Economics, Econometrics and Finance (miscellaneous),Food Science

Reference33 articles.

1. Makarov SS, Bagayev ES, Tsaregradskaya SYu, Kuznetsova IB. Problems of use and reproduction of phytogenic food and medicinal forest resources on the forest fund lands of the Kostroma region. Russian Forestry Journal. 2019;372(6):118–131. (In Russ.). https://doi.org/10.17238/issn0536-1036.2019.6.118, Makarov SS, Bagayev ES, Tsaregradskaya SYu, Kuznetsova IB. Problems of use and reproduction of phytogenic food and medicinal forest resources on the forest fund lands of the Kostroma region. Russian Forestry Journal. 2019;372(6):118–131. (In Russ.). https://doi.org/10.17238/issn0536-1036.2019.6.118

2. Ильин В. С. Шиповник, клюква и другие редкие культуры сада. Челябинск: ЮУНИИСК, 2017. 318 с., Ilin VS. Rosehip, cranberries and other rare garden culture. Chelyabinsk: YUUNIISK; 2017. 318 p. (In Russ.).

3. Tyak GV, Kurlovich LE, Tyak AV. Biological recultivation of degraded peatlands by creating forest berry plants. Vestnik of the Kazan State Agrarian University. 2016;11(2):43–46. (In Russ.). https://doi.org/10.12737/20633, Tyak GV, Kurlovich LE, Tyak AV. Biological recultivation of degraded peatlands by creating forest berry plants. Vestnik of the Kazan State Agrarian University. 2016;11(2):43–46. (In Russ.). https://doi.org/10.12737/20633

4. Bujor O-C, Ginies C, Popa VI, Dufour C. Phenolic compounds and antioxidant activity of lingonberry (Vaccinium vitis-idaea L.) leaf, stem and fruit at different harvest periods. Food Chemistry. 2018;252:356–365. https://doi.org/10.1016/j.foodchem.2018.01.052, Bujor O-C, Ginies C, Popa VI, Dufour C. Phenolic compounds and antioxidant activity of lingonberry (Vaccinium vitis-idaea L.) leaf, stem and fruit at different harvest periods. Food Chemistry. 2018;252:356–365. https://doi.org/10.1016/j.foodchem.2018.01.052

5. Nestby R, Hykkerud AL, Martinussen I. Review of botanical characterization, growth preferences, climatic adaptation and human health effects of Ericaceae and Empetraceae wild dwarf shrub berries in boreal, alpine and arctic areas. Journal of Berry Research. 2019;9(3):515–547. https://doi.org/10.3233/JBR-190390, Nestby R, Hykkerud AL, Martinussen I. Review of botanical characterization, growth preferences, climatic adaptation and human health effects of Ericaceae and Empetraceae wild dwarf shrub berries in boreal, alpine and arctic areas. Journal of Berry Research. 2019;9(3):515–547. https://doi.org/10.3233/JBR-190390

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3