The Effect of Whey Protein Concentrates on Technological and Sensory Quality Indicators of Ice Cream

Author:

Gurskiy Igor1,Tvorogova Antonina1

Affiliation:

1. All-Russian Scientific Research Institute of Refrigeration Industry

Abstract

The demand for protein-fortified foods is increasing, and so is the necessity of the complete utilization of milk constituents in the food industry. The research objective was to study various technological and sensory indicators of ice cream fortified with whey protein concentrate. The study featured ice cream samples with 8% of mass fraction of fat and 10% of nonfat milk solids with whey protein concentrations of 1–5 %. The dynamic viscosity was studied by rotational viscosimetry, dispersion – by microstructural methods, thermal stability – by thermostatic methods, and titratable acidity – by standard methods. Whey protein concentrate in amount of 1–5 % increased the titratable acidity by 1.05–1.90 times and the dynamic viscosity – by 1.16–2.90 times. With an extra addition of 4% whey protein concentrate, the viscosity of the mix exceeded the technologically permissible values. The consistency coefficient increased by 19.4 times, and the flow index decreased by 4.8 times. During freezing, the mix revealed the high capability to air saturation with mass fraction of melt whey protein concentrate of 1 and 2%. Thermal stability also increased: mass fraction of melt after 60 min of retention decreased by 3 times. After adding 1–3% whey protein concentrate, the dispersion of air bubbles and ice crystals improved. It was determined in accordance with the density of distribution by their sizes. The hardness of ice cream decreased 1.4–8.3 times as whey protein concentrate increased. A greater mass fraction of whey protein enhanced the creamy taste and improved the texture. Based on the main technological and sensory quality indicators, the mass fraction of whey protein concentrates should be under 3%. The results may be used in protein-fortified ice cream production.

Publisher

Kemerovo State University

Subject

Industrial and Manufacturing Engineering,Economics, Econometrics and Finance (miscellaneous),Food Science

Reference22 articles.

1. Henriques M, Gomes D, Pereira C. Liquid whey protein concentrates produced by ultrafiltration as primary raw materials for thermal Dairy Gels. Food Technology and Biotechnology. 2017;55(4):454–463. https://doi.org/10.17113/ftb.55.04.17.5248, Henriques M, Gomes D, Pereira C. Liquid whey protein concentrates produced by ultrafiltration as primary raw materials for thermal Dairy Gels. Food Technology and Biotechnology. 2017;55(4):454–463. https://doi.org/10.17113/ftb.55.04.17.5248

2. Andoyo R, Fitri AR, Putri RS, Mardawati E, Nurhadi B, Sukri N, et al. Production of denatured whey protein concentrate at various pH from wastewater of cheese industry. agriTECH. 2021;41(2):161–171. https://doi.org/10.22146/AGRITECH.55439, Andoyo R, Fitri AR, Putri RS, Mardawati E, Nurhadi B, Sukri N, et al. Production of denatured whey protein concentrate at various pH from wastewater of cheese industry. agriTECH. 2021;41(2):161–171. https://doi.org/10.22146/AGRITECH.55439

3. Pradipta DRE, Andoyo R. Optimization formulation of high protein biscuit made from denaturated whey protein concentrate and sweet potato flour supplemented with mineral as emergency food. IOP Conference Series: Earth and Environmental Science. 2020;443(1). https://doi.org/10.1088/1755-1315/443/1/012066, Pradipta DRE, Andoyo R. Optimization formulation of high protein biscuit made from denaturated whey protein concentrate and sweet potato flour supplemented with mineral as emergency food. IOP Conference Series: Earth and Environmental Science. 2020;443(1). https://doi.org/10.1088/1755-1315/443/1/012066

4. Kalinovskaya TV, Bogodist-Timofeeva EYu. Research of functional and technological properties of whey protein concentrate in technologies of whipped candy masses. Proceedings of the Voronezh State University of Engineering Technologies. 2021;83(2):169–174. (In Russ.). https://doi.org/10.20914/2310-1202-2021-2-169-174, Kalinovskaya TV, Bogodist-Timofeeva EYu. Research of functional and technological properties of whey protein concentrate in technologies of whipped candy masses. Proceedings of the Voronezh State University of Engineering Technologies. 2021;83(2):169–174. (In Russ.). https://doi.org/10.20914/2310-1202-2021-2-169-174

5. Levin MA, Burrington KJ, Hartel RW. Whey protein phospholipid concentrate and delactosed permeate: Applications in caramel, ice cream, and cake. Journal of Dairy Science. 2016;99(9):6948–6960. https://doi.org/10.3168/jds.2016-10975, Levin MA, Burrington KJ, Hartel RW. Whey protein phospholipid concentrate and delactosed permeate: Applications in caramel, ice cream, and cake. Journal of Dairy Science. 2016;99(9):6948–6960. https://doi.org/10.3168/jds.2016-10975

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3