The Impact of Technological Factors on the Air Phase of Defrosted Fermented-Milk Desserts

Author:

Gurskiy Igor1ORCID,Tvorogova Antonina1ORCID

Affiliation:

1. All-Russian Scientific Research Institute of Refrigeration Industry

Abstract

Whipped desserts made of fermented milk are very popular. They also make it possible to expand the range of functional products. The consumer properties of defrosted desserts depend on the air phase. This research featured the impact of different formulations and methods on the dispersion of the air phase in the process of defrosting fermented-milk desserts. The study featured several samples of whipped fermented desserts. Sample 1 contained gelatin; Sample 2 contained pectin. Samples 1 and 3 had different contents of fermented foundation while Samples 3 and 5 differed in the amount of gelatin stabilizer. Sample 4 contained a whey protein concentrate. The dispersion of structural elements was measured using microstructural methods. The experiments included the quality parameters of mixes, as we ll as the dispersion of air phase in the frozen state and after 24 h of storage at 4 ± 2°C. The viscosity of the sample with pectin exceeded that with gelatin by 3.8 times. Extra whey protein increased the viscosity by 4.4 times and the overrun – by 1.4 times. In the whey protein sample, the average diameter of air bubbles was 36 μm after 24 h of storage at 4 ± 2°C and 50 μm after 12 months, while in the sample without protein it was 48 and 86 μm, respectively. Sample 3, which had a greater fermentation, demonstrated a smaller average diameter of air bubbles (by 21 μm) after 24 h of storage than the sample with yogurt. The sample with extra gelatin increased the overrun by 1.3 times and negatively affected the dispersion of the air phase. After 24 h of storage, the average diameter of the air bubbles in the sample with an increased content of stabilizer was higher by 27 μm. The air phase was less stable in the sample with pectin. The research established the effect of gelling agents, whey protein concentrates, and fermented foundation on the dispersion and stability of the air phase in fermented-milk desserts. Pectin appeared to have a negative effect on the air phase during defrosting and caused excessive condensation and drainage. The increasing amount of fermented base and gelatin, as well as the use of whey protein concentrates, increased the stability of the air phase during 24 h of storage at 4 ± 2°C. The research results could be used to develop new production technologies of overrun fermented desserts and their preservation in the defrosted state.

Publisher

Kemerovo State University

Subject

Industrial and Manufacturing Engineering,Economics, Econometrics and Finance (miscellaneous),Food Science

Reference24 articles.

1. Warren MM, Hartel RW. Effects of emulsifier, overrun and dasher speed on ice cream microstructure and melting properties. Journal of Food Science. 2018;83(3):639–647. https://doi.org/10.1111/1750-3841.13983, Warren MM, Hartel RW. Effects of emulsifier, overrun and dasher speed on ice cream microstructure and melting properties. Journal of Food Science. 2018;83(3):639–647. https://doi.org/10.1111/1750-3841.13983

2. Gurskiy IA, Tvorogova AA. The effect of whey protein concentrates on technological and sensory quality indicators of ice cream. Food Processing: Techniques and Technology. 2022;52(3):439–448. (In Russ.). https://doi.org/10.21603/2074-9414-2022-3-2376, Gurskiy IA, Tvorogova AA. The effect of whey protein concentrates on technological and sensory quality indicators of ice cream. Food Processing: Techniques and Technology. 2022;52(3):439–448. (In Russ.). https://doi.org/10.21603/2074-9414-2022-3-2376

3. Goff HD, Hartel RW. Ice cream. New York: Springer; 2013. 462 р. https://doi.org/10.1007/978-1-4614-6096-1, Goff HD, Hartel RW. Ice cream. New York: Springer; 2013. 462 p. https://doi.org/10.1007/978-1-4614-6096-1

4. De la Cruz Martínez A, Delgado-Portales RE, Pérez-Martínez JD, González Ramírez JE, Villalobos Lara AD, Borras-Enríquez AJ, et al. Estimation of ice cream mixture viscosity during batch crystallization in a scraped surface heat exchanger. Processes. 2020;8(2). http://doi.org/10.3390/pr8020167, De la Cruz Martínez A, Delgado-Portales RE, Pérez-Martínez JD, González Ramírez JE, Villalobos Lara AD, Borras-Enríquez AJ, et al. Estimation of ice cream mixture viscosity during batch crystallization in a scraped surface heat exchanger. Processes. 2020;8(2). http://doi.org/10.3390/pr8020167

5. Hernández-Parra OD, Ndoye F-T, Benkhelifa H, Flick D, Alvarez G. Effect of process parameters on ice crystals and air bubbles size distributions of sorbets in a scraped surface heat exchanger. International Journal of Refrigeration. 2018;92:225–234. https://doi.org/10.1016/J.IJREFRIG.2018.02.013, Hernández-Parra OD, Ndoye F-T, Benkhelifa H, Flick D, Alvarez G. Effect of process parameters on ice crystals and air bubbles size distributions of sorbets in a scraped surface heat exchanger. International Journal of Refrigeration. 2018;92:225–234. https://doi.org/10.1016/J.IJREFRIG.2018.02.013

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3