EXTERIOR DIFFERENTIAL FORMS ON RIEMANNIAN SYMMETRIC SPACES

Author:

Alexandrova Irina,Alexandrova Irina1,Stepanov Sergey,Stepanov Sergey1,Tsyganok Irina,Tsyganok Irina1

Affiliation:

1. Finance University under the Government of Russian Federation

Abstract

In the present paper we give a rough classification of exterior differential forms on a Riemannian manifold. We define conformal Killing, closed conformal Killing, coclosed conformal Killing and harmonic forms due to this classification and consider these forms on a Riemannian globally symmetric space and, in particular, on a rank-one Riemannian symmetric space. We prove vanishing theorems for conformal Killing L 2-forms on a Riemannian globally symmetric space of noncompact type. Namely, we prove that every closed or co-closed conformal Killing L 2-form is a parallel form on an arbitrary such manifold. If the volume of it is infinite, then every closed or co-closed conformal Killing L 2-form is identically zero. In addition, we prove vanishing theorems for harmonic forms on some Riemannian globally symmetric spaces of compact type. Namely, we prove that all harmonic one-formsvanish everywhere and every harmonic r -form  r  2 is parallel on an arbitrary such manifold. Our proofs are based on the Bochnertechnique and its generalized version that are most elegant and important analytical methods in differential geometry “in the large”.

Publisher

Kemerovo State University

Reference43 articles.

1. Bourguignon J.-P. Formules de Weitzenbock en dimension 4. Seminare A. Besse sur la géometrie Riemannienne dimension 4, Cedic. Ferman, Paris, 1981, vol. 3, pp. 308-333., Bourguignon J.-P. Formules de Weitzenbock en dimension 4. Seminare A. Besse sur la géometrie Riemannienne dimension 4, Cedic. Ferman, Paris, 1981, vol. 3, pp. 308-333.

2. Petersen P. Riemannian Geometry. NY: Springer, 2006. 401 p., Petersen P. Riemannian Geometry. NY: Springer, 2006. 401 p.

3. Stepanov S.E. A class of closed forms and special Maxwell's equations. Tensor N.S., 1997, vol. 58, no. 3, pp. 233-242., Stepanov S.E. A class of closed forms and special Maxwell's equations. Tensor N.S., 1997, vol. 58, no. 3, pp. 233-242.

4. Stepanov S.E. On conformal Killing 2-form of the electromagnetic field. Journal of Geometry and Physics, 2000, vol. 33, no. 3-4, pp. 191-209., Stepanov S.E. On conformal Killing 2-form of the electromagnetic field. Journal of Geometry and Physics, 2000, vol. 33, no. 3-4, pp. 191-209.

5. Tachibana S. On conformal Killing tensor in a Riemannian space. Tohoku Mathematical Journal, 1969, vol. 21, pp. 56-64., Tachibana S. On conformal Killing tensor in a Riemannian space. Tohoku Mathematical Journal, 1969, vol. 21, pp. 56-64.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On the Lichnerovicz Laplacian;Journal of Mathematical Sciences;2022-05

2. Numerical invariant associated with manifold;Journal of Physics: Conference Series;2021-05-01

3. О лапласиане Лихнеровича;Итоги науки и техники. Серия «Современная математика и ее приложения. Тематические обзоры»;2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3