Numerical invariant associated with manifold

Author:

Patne Rohit M,Avachar Gajanan R

Abstract

Abstract Let M be a Riemannian manifold of n dimension with the coordinate (x 1, …, xn ). The distance on M are given by first fundamental metrical tensor I = gijdxldxi , where gij will be assume to be analytic function of x1,…, xn and let the distance element in this space be given by second fundamental quadratic form II = Ω ijdxldxi , where Ω. will be assume to be analytic function of x 1, …, xn . In 1929, W.V.D. Hodge introduced the theory of harmonic integral. By using the theory of harmonic integral, he gave the topological definition of geometric genus Pg of a surface. But we have observed that in the theory of harmonic integral, there is no place for second fundamental form of a surface. This motivates us to introduce the new type of differential form by using second fundamental metrical tensor. In this paper, we have introduced the RP-harmonic integral, Modified RP-harmonic integral and Generalized harmonic integral. By using the period matrix corresponding to the RP-harmonic integral, Modified RP-harmonic integral and Generalized harmonic integral, we have studied the numerical invariant of a manifold M. As anologous to geometric genus of a surface, we have defined invariant of a surface, we called as RP-geometric genus Prp and Generalized geometric genus P gh.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3