Synergistic effects of Lactobacillus plantarum and Staphylococcus carnosus on animal food components

Author:

Ivankin Andrey1,Verevkin Alehey1,Efremov Alexander1,Vostrikova Natalia2,Kulikovskii Andrey2,Baburina Marina2

Affiliation:

1. Bauman Moscow State Technical University

2. V.M. Gorbatov Federal Research Center for Food Systems of RAS

Abstract

Introduction. Various cultures of microorganisms have recently been used to accelerate technological processes. In this regard, it appears highly relevant to study the action of beneficial microorganisms on the components of food systems. Study objects and methods. The study objects included a model mixture of beef muscle and pork fat tissue with 2% salt, as well as a model protein. Lactobacillus plantarum and Staphylococcus carnosus were used in an amount of 1×107 CFU/g of raw material. The compositions of free amino and fatty acids, carbohydrates, and other components were analyzed by liquid and gas chromatography with mass-selective detection. Results and discussion. We studied the effect of L. plantarum and S. carnosus on protein, lipid, and carbohydrate components of food systems based on animal raw materials. We found that the combined effect of the cultures was by 25% as effective as their individual use at 4×109 CFU/kg of raw material. The three-week hydrolysis of proteins to free amino acids was almost a third more effective than when the cultures were used separately. The synergistic effect of L. plantarum and S. carnosus on fat components was not detected reliably. Free monosaccharides formed more intensively when the cultures were used together. In particular, the amount of free lactose almost doubled, compared to the cultures’ individual action. Conclusion. We described culture-caused quantitative changes in the main components of animal-based food systems: amino acids, fatty acids, carbohydrates, and basic organic compounds. Also, we identified substances that can affect the taste and aroma of final products when the cultures are used together or separately. These results make it possible to obtain products with a wide variety of sensory properties.

Publisher

Kemerovo State University

Subject

Food Science

Reference31 articles.

1. Takahashi M, Masaki K, Mizuno A, Goto-Yamamoto N. Modified COLD-PCR for detection of minor microorganisms in wine samples during the fermentation. Food Microbiology. 2014;39:74–80. DOI: https://doi.org/10.1016/j.fm.2013.11.009., Takahashi M, Masaki K, Mizuno A, Goto-Yamamoto N. Modified COLD-PCR for detection of minor microorganisms in wine samples during the fermentation. Food Microbiology. 2014;39:74–80. DOI: https://doi.org/10.1016/j.fm.2013.11.009.

2. Cimaglia F, Tristezza M, Saccomanno A, Rampino P, Perrotta C, Capozzi V, et al. An innovative oligonucleotide microarray to detect spoilage microorganisms in wine. Food Control. 2018;87:169–179. DOI: https://doi.org/10.1016/j.foodcont.2017.12.023., Cimaglia F, Tristezza M, Saccomanno A, Rampino P, Perrotta C, Capozzi V, et al. An innovative oligonucleotide microarray to detect spoilage microorganisms in wine. Food Control. 2018;87:169–179. DOI: https://doi.org/10.1016/j.foodcont.2017.12.023.

3. Longin C, Petitgonnet C, Guilloux-Benatier M, Rousseaux S, Alexandre H. Application of flow cytometry to wine microorganisms. Food Microbiology. 2017;62:221–231. DOI: https://doi.org/10.1016/j.fm.2016.10.023., Longin C, Petitgonnet C, Guilloux-Benatier M, Rousseaux S, Alexandre H. Application of flow cytometry to wine microorganisms. Food Microbiology. 2017;62:221–231. DOI: https://doi.org/10.1016/j.fm.2016.10.023.

4. Ribes S, Ruiz-Rico M, Pérez-Esteve E, Fuentes A, Barat JM. Enhancing the antimicrobial activity of eugenol, carvacrol and vanillin immobilised on silica supports against Escherichia coli or Zygosaccharomyces rouxii in fruit juices by their binary combinations. LWT – Food Science and Technology. 2019;113. DOI: https://doi.org/10.1016/j.lwt.2019.108326., Ribes S, Ruiz-Rico M, Pérez-Esteve E, Fuentes A, Barat JM. Enhancing the antimicrobial activity of eugenol, carvacrol and vanillin immobilised on silica supports against Escherichia coli or Zygosaccharomyces rouxii in fruit juices by their binary combinations. LWT – Food Science and Technology. 2019;113. DOI: https://doi.org/10.1016/j.lwt.2019.108326.

5. Bracke N, Van Poucke M, Baert B, Wynendaele E, De Bels L, Van den Broeck W, et al. Identification of a microscopically selected microorganism in milk samples. Journal of Dairy Science. 2014;97(2):609–615. DOI: https://doi.org/10.3168/jds.2013-6932., Bracke N, Van Poucke M, Baert B, Wynendaele E, De Bels L, Van den Broeck W, et al. Identification of a microscopically selected microorganism in milk samples. Journal of Dairy Science. 2014;97(2):609–615. DOI: https://doi.org/10.3168/jds.2013-6932.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3