Forecasting Tourism Demand with Google Trends For a Major European City Destination

Author:

Önder Irem,Gunter Ulrich

Abstract

The purpose of this study is to investigate whether using Google Trends indices for web and image search improves tourism demand forecast accuracy relative to a purely autoregressive baseline model. To this end, Vienna—one of the top-10 European city destinations—is chosen as a case example for which the predictive power of Google Trends is evaluated at the total demand and at the source market levels. The effect of the search query language on predictability of arrivals is considered, and differences between seasonal and seasonally adjusted data are investigated. The results confirm that the forecast accuracy is improved when Google Trends data are included across source markets and forecast horizons for seasonal and seasonally adjusted data, leaning toward native language searches. This outperformance not only holds relative to purely autoregressive baseline specifications but also relative to time-series models such as Holt–Winters and naive benchmarks, in which the latter are significantly outperformed on a regular basis.

Publisher

Cognizant, LLC

Subject

Tourism, Leisure and Hospitality Management

Cited by 76 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3