Toward an extended framework of exhaust data for predictive analytics: An empirical approach

Author:

O'Leary Daniel E.1ORCID

Affiliation:

1. Marshall School of Business, Leventhal School of Accounting University of Southern California Los Angeles California USA

Abstract

SummaryWe investigate applying and extending an exhaust data framework, using an empirical analysis to explore and compare different predictive analytic capabilities of both internal and external exhaust data for estimating sales. We use internal exhaust data that explores the relationship between app usage and web traffic data and estimation of sales and find the ability to predict sales at least 4 days ahead. We also develop predictive models of sales, using external data of Google searches, extending the previous research to include additional macroeconomic Google variables and Wikipedia pageviews, finding that we can predict at least 4 months ahead, suggesting a portfolio of exhaust data be used. We introduce the roles of internal and external exhaust data, direct and indirect exhaust data and transformed exhaust data, into an exhaust data framework. We examine what appear to be different levels of information fineness and predictability from those exhaust data sources. We also note the importance of the types of devices (e.g., mobile) and the types of commerce (e.g., mobile commerce) in creating and finding different types of exhaust. Finally, we apply an existing exhaust data framework to develop macroeconomic data exhaust variables, as the means of capturing inflation and unemployment information, using Google searches.

Funder

KPMG

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3