Balancing Development and Sustainability

Author:

Tewari Veena1ORCID,Morande Swapnil2ORCID,Mishra Amitabh1,Amini Mitra3ORCID,Gul Kanwal2ORCID,Vali Shaik Mastan1

Affiliation:

1. University of Technology and Applied Sciences, Oman

2. University of Naples, Italy

3. Bennett University, India

Abstract

Forecasting future trends in tourism growth is imperative for sustainability planning, yet highly complex due to the sector's multifaceted nature. This study leverages machine learning techniques to develop an integrated model predicting foreign tourist arrivals to India. Utilizing 2000-2022 data encompassing tourist statistics alongside relevant socioeconomic indicators, advanced algorithms like XGBoost uncover key drivers and relationships to generate strategic long-range forecasts. The multilayered analysis reveals tourism infrastructure investments strongly stimulate arrivals, underscoring policy priorities. However, skills training expenditures exhibit a more nuanced linkage, indicating localized needs. Beyond forecasting accuracy, the research makes significant methodological contributions regarding multivariate input features and model robustness for tourism ecosystems. It advocates systems thinking-based approaches over reductionist modeling of isolated past arrivals, given tourism's interdependence with broader socioeconomics.

Publisher

IGI Global

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3