Evaluation of Surface Dose for Intensity Modulated Radiotherapy of Head and Neck Cancer Using Thermoluminescent Dosimeters

Author:

GÜL Osman Vefa1,BÜYÜKÇİZMECİ Nihal2,BAŞARAN Hamit2

Affiliation:

1. SELÇUK ÜNİVERSİTESİ

2. SELCUK UNIVERSITY

Abstract

Accurate estimation of the surface dose in radiotherapy of patients with head and neck cancer is very important in terms of treatment. The aim of this study is to evaluate the surface dose for intensity-modulated radiotherapy (IMRT) of head and neck cancer using thermoluminescent dosimeters (TLDs). In addition, it is aimed to examine the surface dose estimates of the treatment planning system (TPS) for different grid sizes. Before the computed tomography (CT) images were taken for 15 head and neck cancer patients, 5 different points determined in the neck region were marked in a way that would not cause artifacts. IMRT plans are created for 1.5 and 2.5 mm grid sizes. Surface doses were obtained for TPS calculations and TLD measurements at 5 different points in the neck region. Surface doses obtained from TLD measurements and TPS calculations with different grid sizes were compared. All patients received 3-stage adaptive radiotherapy (ART) and the surface dose comparison was repeated for each plan. According to plan 0, the height of TLD measurements for the 1.5 and 2.5 mm grid size were 4.06% and 7.87%, respectively. In Plan 1, the difference between TPS and TLD doses was 4.00% and 8.15% for grid size 1.5mm and 2.5mm, respectively (p=0.00 and p=0.00). For dose measurements from Plan 2, the difference between TPS and TLD doses was 4.07% and 9.96% for grid size 1.5mm and 2.5mm, respectively (p=0.00 and p=0.00). Surface doses obtained in TLD measurements for all treatment plans were higher than in TPS dose calculations. Accurate estimation of the surface dose in head and neck cancer radiotherapy is very important for treatment. Surface doses calculated with TPS are usually lower than the prescribed dose. Therefore, during the evaluation of radiotherapy plans, it should be considered that TPS underestimates the surface dose. This ratio can be determined by dosimetric measurements. Thermoluminescent dosimeters are suitable equipment for this process.

Publisher

Gazi University

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3