On the Voltage Dependent Series Resistance, Interface Traps, and Conduction Mechanisms in the Al/(Ti-doped DLC)/p-Si/Au Schottky Barrier Diodes (SBDs)

Author:

Hameed Sabreen1ORCID,Berkün Öznur2ORCID,Altındal Yerişkin Seçkin1ORCID

Affiliation:

1. GAZİ ÜNİVERSİTESİ

2. ZONGULDAK BÜLENT ECEVİT ÜNİVERSİTESİ

Abstract

In this study, Al-(Ti:DLC)-pSi/Au Schottky barrier diode (SBD) was manufactured instead of conventional metal / semiconductor (MS) with and without an interlayer and then several fundamental electrical-characteristics such as ideality factor (n), barrier height B series and shunt resistances (Rs, Rsh), concentration of acceptor atoms (NA), and width of depletion-layer (Wd) were derived from the forward-reverse bias current/voltage (I-V), capacitance and conductance as a function of voltage (C/G-V) data using various calculation-methods. Semi logarithmic IF-VF plot shows a linear behavior at lower-voltages and then departed from linearity as a result of the influence of series resistance/Rs and organic-interlayer. Three linear regions can be seen on the double-logarithmic IF-VF plot. with different slopes (1.28, 3.14, and 1.79) in regions with low, middle, and high forward bias, which are indicated that Ohmic-mechanism, trap-charge-limited-current (TCLC) mechanism, and space-charge-limited-current (SCLC) mechanism, respectively. Energy dependent surface states (Nss) vs (Ess-Ev) profile was also obtained from the Card-Rhoderick method by considering voltage-dependence of n and B and they were grown from the mid-gap energy up to the semiconductor's valance band (Ev). To see the impact of Rs for 1 MHz, the measured C/G-V graphs were amendment. All results are indicated that almost all electrical parameters and conduction mechanism are quite depending on Rs, Nss, and calculation method due the voltage dependent of them.

Publisher

Gazi University

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3