Machine-learning analysis outperforms conventional statistical models and CT classification systems in predicting 6-month outcomes in pediatric patients sustaining traumatic brain injury

Author:

Hale Andrew T.12,Stonko David P.3,Brown Amber1,Lim Jaims1,Voce David J.4,Gannon Stephen R.1,Le Truc M.5,Shannon Chevis N.14

Affiliation:

1. Surgical Outcomes Center for Kids, and

2. Vanderbilt University School of Medicine, Medical Scientist Training Program;

3. Vanderbilt University School of Medicine;

4. Department of Neurosurgery, Vanderbilt University Medical Center, Nashville, Tennessee

5. Division of Pediatric Critical Care Medicine, Monroe Carell Jr. Children’s Hospital at Vanderbilt;

Abstract

OBJECTIVEModern surgical planning and prognostication requires the most accurate outcomes data to practice evidence-based medicine. For clinicians treating children following traumatic brain injury (TBI) these data are severely lacking. The first aim of this study was to assess published CT classification systems in the authors’ pediatric cohort. A pediatric-specific machine-learning algorithm called an artificial neural network (ANN) was then created that robustly outperformed traditional CT classification systems in predicting TBI outcomes in children.METHODSThe clinical records of children under the age of 18 who suffered a TBI and underwent head CT within 24 hours after TBI (n = 565) were retrospectively reviewed.RESULTS“Favorable” outcome (alive with Glasgow Outcome Scale [GOS] score ≥ 4 at 6 months postinjury, n = 533) and “unfavorable” outcome (death at 6 months or GOS score ≤ 3 at 6 months postinjury, n = 32) were used as the primary outcomes. The area under the receiver operating characteristic (ROC) curve (AUC) was used to delineate the strength of each CT grading system in predicting survival (Helsinki, 0.814; Rotterdam, 0.838; and Marshall, 0.781). The AUC for CT score in predicting GOS score ≤ 3, a measure of overall functionality, was similarly predictive (Helsinki, 0.717; Rotterdam, 0.748; and Marshall, 0.663). An ANN was then constructed that was able to predict 6-month outcomes with profound accuracy (AUC = 0.9462 ± 0.0422).CONCLUSIONSThis study showed that machine-learning can be leveraged to more accurately predict TBI outcomes in children.

Publisher

Journal of Neurosurgery Publishing Group (JNSPG)

Subject

Neurology (clinical),General Medicine,Surgery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3