Prediction of Prolonged Ventilation after Coronary Artery Bypass Grafting: Data from an Artificial Neural Network

Author:

Wise Eric Stephen,Stonko David P.,Glaser Zachary A.,Garcia Kelly L.,Huang Jennifer J.,Kim Justine S.,Kallos Justiss A.,Starnes Joseph R.,Fleming Jacob W.,Hocking Kyle M.,Brophy Colleen M.,Eagle Susan S.

Abstract

Objectives: The need for mechanical ventilation 24 hours after coronary artery bypass grafting (CABG) is considered a morbidity by the Society of Thoracic Surgeons. The purpose of this investigation was twofold: to identify simple preoperative patient factors independently associated with prolonged ventilation and to optimize prediction and early identification of patients prone to prolonged ventilation using an artificial neural network (ANN).Methods: Using the institutional Adult Cardiac Database, 738 patients who underwent CABG since 2005 were reviewed for preoperative factors independently associated with prolonged postoperative ventilation. Prediction of prolonged ventilation from the identified variables was modeled using both “traditional” multiple logistic regression and an ANN. The two models were compared using Pearson r2 and area under the curve (AUC) parameters.Results: Of 738 included patients, 14% (104/738) required mechanical ventilation ≥ 24 hours postoperatively. Upon multivariate analysis, higher body-mass index (BMI; odds ratio [OR] 1.10 per unit, P < 0.001), lower ejection fraction (OR 0.97 per %, P = 0.01) and use of cardiopulmonary bypass (OR 2.59, P = 0.02) were independently predictive of prolonged ventilation. The Pearson r2 and AUC of the multivariate nominal logistic regression model were 0.086 and 0.698 ± 0.05, respectively; analogous statistics of the ANN model were 0.159 and 0.732 ± 0.05, respectively.BMI, ejection fraction and cardiopulmonary bypass represent three simple factors that may predict prolonged ventilation after CABG. Early identification of these patients can be optimized using an ANN, an emerging paradigm for clinical outcomes modeling that may consider complex relationships among these variables.

Publisher

Carden Jennings Publishing Co.

Subject

Cardiology and Cardiovascular Medicine,Surgery,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3