Use of an artificial neural network to predict head injury outcome

Author:

Rughani Anand I.1,Dumont Travis M.1,Lu Zhenyu2,Bongard Josh2,Horgan Michael A.1,Penar Paul L.1,Tranmer Bruce I.1

Affiliation:

1. Division of Neurosurgery and

2. Department of Computer Science, University of Vermont, Burlington, Vermont

Abstract

Object The authors describe the artificial neural network (ANN) as an innovative and powerful modeling tool that can be increasingly applied to develop predictive models in neurosurgery. They aimed to demonstrate the utility of an ANN in predicting survival following traumatic brain injury and compare its predictive ability with that of regression models and clinicians. Methods The authors designed an ANN to predict in-hospital survival following traumatic brain injury. The model was generated with 11 clinical inputs and a single output. Using a subset of the National Trauma Database, the authors “trained” the model to predict outcome by providing the model with patients for whom 11 clinical inputs were paired with known outcomes, which allowed the ANN to “learn” the relevant relationships that predict outcome. The model was tested against actual outcomes in a novel subset of 100 patients derived from the same database. For comparison with traditional forms of modeling, 2 regression models were developed using the same training set and were evaluated on the same testing set. Lastly, the authors used the same 100-patient testing set to evaluate 5 neurosurgery residents and 4 neurosurgery staff physicians on their ability to predict survival on the basis of the same 11 data points that were provided to the ANN. The ANN was compared with the clinicians and the regression models in terms of accuracy, sensitivity, specificity, and discrimination. Results Compared with regression models, the ANN was more accurate (p < 0.001), more sensitive (p < 0.001), as specific (p = 0.260), and more discriminating (p < 0.001). There was no difference between the neurosurgery residents and staff physicians, and all clinicians were pooled to compare with the 5 best neural networks. The ANNs were more accurate (p < 0.0001), more sensitive (p < 0.0001), as specific (p = 0.743), and more discriminating (p < 0.0001) than the clinicians. Conclusions When given the same limited clinical information, the ANN significantly outperformed regression models and clinicians on multiple performance measures. While this paradigm certainly does not adequately reflect a real clinical scenario, this form of modeling could ultimately serve as a useful clinical decision support tool. As the model evolves to include more complex clinical variables, the performance gap over clinicians and logistic regression models will persist or, ideally, further increase.

Publisher

Journal of Neurosurgery Publishing Group (JNSPG)

Subject

Genetics,Animal Science and Zoology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3