Radiomic modeling to predict risk of vertebral compression fracture after stereotactic body radiation therapy for spinal metastases

Author:

Gui Chengcheng1,Chen Xuguang1,Sheikh Khadija1,Mathews Liza1,Lo Sheng-Fu L.2,Lee Junghoon1,Khan Majid A.3,Sciubba Daniel M.2,Redmond Kristin J.1

Affiliation:

1. Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore;

2. Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore; and

3. Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland

Abstract

OBJECTIVE In the treatment of spinal metastases with stereotactic body radiation therapy (SBRT), vertebral compression fracture (VCF) is a common and potentially morbid complication. Better methods to identify patients at high risk of radiation-induced VCF are needed to evaluate prophylactic measures. Radiomic features from pretreatment imaging may be employed to more accurately predict VCF. The objective of this study was to develop and evaluate a machine learning model based on clinical characteristics and radiomic features from pretreatment imaging to predict the risk of VCF after SBRT for spinal metastases. METHODS Vertebral levels C2 through L5 containing metastases treated with SBRT were included if they were naive to prior surgery or radiation therapy, target delineation was based on consensus guidelines, and 1-year follow-up data were available. Clinical features, including characteristics of the patient, disease, and treatment, were obtained from chart review. Radiomic features were extracted from the planning target volume (PTV) on pretreatment CT and T1-weighted MRI. Clinical and radiomic features selected by least absolute shrinkage and selection operator (LASSO) regression were included in random forest classification models, which were trained to predict VCF within 1 year after SBRT. Model performance was assessed with leave-one-out cross-validation. RESULTS Within 1 year after SBRT, 15 of 95 vertebral levels included in the analysis demonstrated new or progressive VCF. Selected clinical features included BMI, performance status, total prescription dose, dose to 99% of the PTV, lumbar location, and 2 components of the Spine Instability Neoplastic Score (SINS): lytic tumor character and spinal misalignment. Selected radiomic features included 5 features from CT and 3 features from MRI. The best-performing classification model, derived from a combination of selected clinical and radiomic features, demonstrated a sensitivity of 0.844, specificity of 0.800, and area under the receiver operating characteristic (ROC) curve (AUC) of 0.878. This model was significantly more accurate than alternative models derived from only selected clinical features (AUC = 0.795, p = 0.048) or only components of the SINS (AUC = 0.579, p < 0.0001). CONCLUSIONS In the treatment of spinal metastases with SBRT, a machine learning model incorporating both clinical features and radiomic features from pretreatment imaging predicted VCF at 1 year after SBRT with excellent sensitivity and specificity, outperforming models developed from clinical features or components of the SINS alone. If validated, these findings may allow more judicious selection of patients for prophylactic interventions.

Publisher

Journal of Neurosurgery Publishing Group (JNSPG)

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3