Artificial Intelligence and Machine Learning for Risk Prediction and Diagnosis of Vertebral Fractures: A Systematic Review and Meta-Analysis

Author:

Namireddy Srikar R1,Gill Saran S1,Peerbhai Amaan1,Kamath Abith G1,Ramsay Daniele S. C.1,Ponniah Hariharan Subbiah1,Salih Ahmed1,Jankovic Dragan2,Kalasauskas Darius2,Neuhoff Jonathan3,Kramer Andreas2,Russo Salvatore4,Thavarajasingam Santhosh G.1

Affiliation:

1. Imperial Brain & Spine Initiative

2. University Medical Center Mainz

3. Berufsgenossenschaftliche Unfallklinik Frankfurt am Main

4. Imperial College Healthcare NHS Trust

Abstract

Abstract

Introduction: With the increasing prevalence of vertebral fractures, accurate diagnosis and prognostication are essential. This study assesses the effectiveness of AI in diagnosing and predicting vertebral fractures through a systematic review and meta-analysis. Method A comprehensive search across major databases selected studies utilizing AI for vertebral fracture diagnosis or prognosis. Out of 14,161 studies initially identified, 79 were included, with 40 undergoing meta-analysis. Diagnostic models were stratified by pathology: non-pathological vertebral fractures, osteoporotic vertebral fractures, and vertebral compression fractures. The primary outcome measure was AUROC. Results AI showed high accuracy in diagnosing and predicting vertebral fractures: predictive AUROC = 0.82, osteoporotic vertebral fracture diagnosis AUROC = 0.92, non-pathological vertebral fracture diagnosis AUROC = 0.85, and vertebral compression fracture diagnosis AUROC = 0.87, all significant (p < 0.001). Traditional models had the highest median AUROC (0.90) for fracture prediction, while deep learning models excelled in diagnosing all fracture types. High heterogeneity (I² > 99%, p < 0.001) indicated significant variation in model design and performance. Conclusion AI technologies show considerable promise in improving the diagnosis and prognostication of vertebral fractures, with high accuracy. However, observed heterogeneity and study biases necessitate further research. Future efforts should focus on standardizing AI models and validating them across diverse datasets to ensure clinical utility.

Publisher

Springer Science and Business Media LLC

Reference72 articles.

1. Epidemiology of fracture risk with advancing age;Ensrud KE;J. Gerontol. A Biol. Sci. Med. Sci.,2013

2. Donnally, C. J., DiPompeo, C. M. & Varacallo, M. Vertebral compression fractures. PubMed. Treasure Island (FL): StatPearls Publishing; 2024.

3. Incidence of vertebral fracture in Europe: results from the European prospective osteoporosis study (EPOS);The European Prospective Osteoporosis Study (EPOS) Group;J. Bone Miner. Res.,2002

4. Rate and circumstances of clinical vertebral fractures in older men;Freitas SS;Osteoporos. Int.,2007

5. Risk factors for a first-incident radiographic vertebral fracture in women ≥ 65 years of age: the study of osteoporotic fractures;Nevitt MC;J. Bone Miner. Res.,2004

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3