Vascular architecture mapping for early detection of glioblastoma recurrence

Author:

Stadlbauer Andreas12,Eyüpoglu Ilker1,Buchfelder Michael1,Dörfler Arnd3,Zimmermann Max1,Heinz Gertraud2,Oberndorfer Stefan4

Affiliation:

1. Departments of Neurosurgery and

2. Institute of Medical Radiology and

3. Neuroradiology, University of Erlangen-Nürnberg, Erlangen, Germany; and

4. Department of Neurology, University Clinic of St. Pölten, St. Pölten, Austria

Abstract

OBJECTIVETreatment failure and inevitable tumor recurrence are the main reasons for the poor prognosis of glioblastoma (GB). Gross-total resection at repeat craniotomy for GB recurrence improves patient overall survival but requires early and reliable detection. It is known, however, that even advanced MRI approaches have limited diagnostic performance for distinguishing tumor progression from pseudoprogression. The novel MRI technique of vascular architectural mapping (VAM) provides deeper insight into tumor microvascularity and neovascularization. In this study the authors evaluated the usefulness of VAM for the monitoring of GB patients and quantitatively analyzed the features of neovascularization of early- and progressed-stage GB recurrence.METHODSIn total, a group of 115 GB patients who received overall 374 follow-up MRI examinations after standard treatment were retrospectively evaluated in this study. The clinical routine MRI (cMRI) protocol at 3 Tesla was extended with the authors’ experimental VAM approach, requiring 2 minutes of extra time for data acquisition. Custom-made MATLAB software was used for calculation of imaging biomarker maps of macrovascular perfusion from perfusion cMRI as well as of microvascular perfusion and architecture from VAM data. Additionally, cMRI data were analyzed by two board-certified radiologists in consensus. Statistical procedures included receiver operating characteristic (ROC) analysis to determine diagnostic performances for GB recurrence detection.RESULTSOverall, cMRI showed GB recurrence in 89 patients, and in 28 of these patients recurrence was detected earlier with VAM data, by 1 (20 patients) or 2 (8 patients) follow-up examinations, than with cMRI data. The mean time difference between recurrence detection with VAM and cMRI data was 147 days. During this time period the mean tumor volume increased significantly (p < 0.001) from 9.7 to 26.8 cm3. Quantitative analysis of imaging biomarkers demonstrated microvascular but no macrovascular hyperperfusion in early GB recurrence. Therefore, ROC analysis revealed superior diagnostic performance for VAM compared with cMRI.CONCLUSIONSThis study demonstrated that the targeted assessment of microvascular features using the VAM technique provided valuable information about early neovascularization activity in recurrent GB that is complementary to perfusion cMRI and may be helpful for earlier and more precise monitoring of patients suffering from GB. This VAM approach is compatible with existing cMRI protocols. Prospective clinical trials are necessary to investigate the clinical usefulness and potential benefit of increased overall survival with the use of VAM in patients with recurrent GB.

Publisher

Journal of Neurosurgery Publishing Group (JNSPG)

Subject

Neurology (clinical),General Medicine,Surgery

Reference78 articles.

1. Improved tumor oxygenation and survival in glioblastoma patients who show increased blood perfusion after cediranib and chemoradiation;Batchelor;Proc Natl Acad Sci U S A,2013

2. Angiogenesis in cancer and other diseases;Carmeliet;Nature,2000

3. Microscopic susceptibility variation and transverse relaxation: theory and experiment;Weisskoff;Magn Reson Med,1994

4. Relative cerebral blood volume maps corrected for contrast agent extravasation significantly correlate with glioma tumor grade, whereas uncorrected maps do not;Boxerman;AJNR Am J Neuroradiol,2006

5. Rous-Whipple Award Lecture. How tumors make bad blood vessels and stroma;Dvorak;Am J Pathol,2003

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3