Prediction of early recurrence of adult‐type diffuse gliomas following radiotherapy using multi‐modal magnetic resonance images

Author:

Salari Elahheh1,Chen Xuxin1,Wynne Jacob Frank1,Qiu Richard L. J.1,Roper Justin1,Shu Hui‐Kuo1,Yang Xiaofeng1

Affiliation:

1. Department of Radiation Oncology and Winship Cancer Institute Emory University School of Medicine Atlanta Georgia USA

Abstract

AbstractBackgroundAdult‐type diffuse gliomas are among the central nervous system's most aggressive malignant primary neoplasms. Despite advancements in systemic therapies and technological improvements in radiation oncology treatment delivery, the survival outcome for these patients remains poor. Fast and accurate assessment of tumor response to oncologic treatments is crucial, as it can enable the early detection of recurrent or refractory gliomas, thereby allowing timely intervention with life‐prolonging salvage therapies.PurposeRadiomics is a developing field with great potential to improve medical image interpretation. This study aims to apply a radiomics‐based predictive model for classifying response to radiotherapy within the first 3 months post‐treatment.MethodsNinety‐five patients were selected from the Burdenko Glioblastoma Progression Dataset. Tumor regions were delineated in the axial plane on contrast‐enhanced T1(CE T1W) and T2 fluid‐attenuated inversion recovery (T2_FLAIR) magnetic resonance imaging (MRI). Hand‐crafted radiomic (HCR) features, including first‐ and second‐order features, were extracted using PyRadiomics (3.7.6) in Python (3.10). Then, recursive feature elimination with a random forest (RF) classifier was applied for feature dimensionality reduction. RF and support vector machine (SVM) classifiers were built to predict treatment outcomes using the selected features. Leave‐one‐out cross‐validation was employed to tune hyperparameters and evaluate the models.ResultsFor each segmented target, 186 HCR features were extracted from the MRI sequence. Using the top‐ranked radiomic features from a combination of CE T1W and T2_FLAIR, an optimized classifier achieved the highest averaged area under the curve (AUC) of 0.829 ± 0.075 using the RF classifier. The HCR features of CE T1W produced the worst outcomes among all models (0.603 ± 0.024 and 0.615 ± 0.075 for RF and SVM classifiers, respectively).ConclusionsWe developed and evaluated a radiomics‐based predictive model for early tumor response to radiotherapy, demonstrating excellent performance supported by high AUC values. This model, harnessing radiomic features from multi‐modal MRI, showed superior predictive performance compared to single‐modal MRI approaches. These results underscore the potential of radiomics in clinical decision support for this disease process.

Funder

National Institutes of Health

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3