The Potential of Dual Camera Systems for Multimodal Imaging of Cardiac Electrophysiology and Metabolism

Author:

Holcomb Mark R.1,Woods Marcella C.1,Uzelac Ilija1,Wikswo John P.1,Gilligan Jonathan M.1,Sidorov Veniamin Y.1

Affiliation:

1. Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee 37235-1807; Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37235-1631; Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee 37235-0615; and Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University, Nashville, Tennessee 37235-1807

Abstract

Fluorescence imaging has become a common modality in cardiac electrodynamics. A single fluorescent parameter is typically measured. Given the growing emphasis on simultaneous imaging of more than one cardiac variable, we present an analysis of the potential of dual camera imaging, using as an example our straightforward dual camera system that allows simultaneous measurement of two dynamic quantities from the same region of the heart. The advantages of our system over others include an optional software camera calibration routine that eliminates the need for precise camera alignment. The system allows for rapid setup, dichroic image separation, dual-rate imaging, and high spatial resolution, and it is generally applicable to any two-camera measurement. This type of imaging system offers the potential for recording simultaneously not only transmembrane potential and intracellular calcium, two frequently measured quantities, but also other signals more directly related to myocardial metabolism, such as [K+]e, NADH, and reactive oxygen species, leading to the possibility of correlative multimodal cardiac imaging. We provide a compilation of dye and camera information critical to the design of dual camera systems and experiments.

Publisher

SAGE Publications

Subject

General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3