Optical mapping and optogenetics in cardiac electrophysiology research and therapy: a state-of-the-art review

Author:

Baines Olivia1ORCID,Sha Rina1,Kalla Manish1ORCID,Holmes Andrew P1ORCID,Efimov Igor R23ORCID,Pavlovic Davor1ORCID,O’Shea Christopher1ORCID

Affiliation:

1. Institute of Cardiovascular Sciences, College of Medical and Dental Science, University of Birmingham , Edgbastion, Wolfson Drive, Birmingham B15 2TT , UK

2. Department of Biomedical Engineering, Northwestern University , Evanston, IL , USA

3. Department of Medicine, Division of Cardiology, Northwestern University , Evanston, IL , USA

Abstract

Abstract State-of-the-art innovations in optical cardiac electrophysiology are significantly enhancing cardiac research. A potential leap into patient care is now on the horizon. Optical mapping, using fluorescent probes and high-speed cameras, offers detailed insights into cardiac activity and arrhythmias by analysing electrical signals, calcium dynamics, and metabolism. Optogenetics utilizes light-sensitive ion channels and pumps to realize contactless, cell-selective cardiac actuation for modelling arrhythmia, restoring sinus rhythm, and probing complex cell–cell interactions. The merging of optogenetics and optical mapping techniques for ‘all-optical’ electrophysiology marks a significant step forward. This combination allows for the contactless actuation and sensing of cardiac electrophysiology, offering unprecedented spatial–temporal resolution and control. Recent studies have performed all-optical imaging ex vivo and achieved reliable optogenetic pacing in vivo, narrowing the gap for clinical use. Progress in optical electrophysiology continues at pace. Advances in motion tracking methods are removing the necessity of motion uncoupling, a key limitation of optical mapping. Innovations in optoelectronics, including miniaturized, biocompatible illumination and circuitry, are enabling the creation of implantable cardiac pacemakers and defibrillators with optoelectrical closed-loop systems. Computational modelling and machine learning are emerging as pivotal tools in enhancing optical techniques, offering new avenues for analysing complex data and optimizing therapeutic strategies. However, key challenges remain including opsin delivery, real-time data processing, longevity, and chronic effects of optoelectronic devices. This review provides a comprehensive overview of recent advances in optical mapping and optogenetics and outlines the promising future of optics in reshaping cardiac electrophysiology and therapeutic strategies.

Funder

Wellcome Trust

BHF

China Research Council

Publisher

Oxford University Press (OUP)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3