Intracellular Ca dynamics in ventricular fibrillation

Author:

Omichi Chikaya1,Lamp Scott T.1,Lin Shien-Fong1,Yang Junzhong1,Baher Ali1,Zhou Shengmei1,Attin Mina1,Lee Moon-Hyoung1,Karagueuzian Hrayr S.1,Kogan Boris1,Qu Zhilin1,Garfinkel Alan1,Chen Peng-Sheng1,Weiss James N.1

Affiliation:

1. Division of Cardiology, Cedars-Sinai Medical Center and Center for Health Sciences, University of California-Los Angeles (UCLA) Cardiovascular Research Laboratory, Departments of Medicine, Physiology, Physiological Science, and Computer Science, David Geffen School of Medicine, UCLA, Los Angeles, California 90095

Abstract

In the heart, membrane voltage ( Vm) and intracellular Ca (Cai) are bidirectionally coupled, so that ionic membrane currents regulate Cai cycling and Cai affects ionic currents regulating action potential duration (APD). Although Cai reliably and consistently tracks Vm at normal heart rates, it is possible that at very rapid rates, sarcoplasmic reticulum Cai cycling may exhibit intrinsic dynamics. Non-voltage-gated Cai release might cause local alternations in APD and refractoriness that influence wavebreak during ventricular fibrillation (VF). In this study, we tested this hypothesis by examining the extent to which Cai is associated with Vm during VF. Cai transients were mapped optically in isolated arterially perfused swine right ventricles using the fluorescent dye rhod 2 AM while intracellular membrane potential was simultaneously recorded either locally with a microelectrode (5 preparations) or globally with the voltage-sensitive dye RH-237 (5 preparations). Mutual information (MI) is a quantitative statistical measure of the extent to which knowledge of one variable ( Vm) predicts the value of a second variable (Cai). MI was high during pacing and ventricular tachycardia (VT; 1.13 ± 0.21 and 1.69 ± 0.18, respectively) but fell dramatically during VF (0.28 ± 0.06, P < 0.001). Cai at sites 4–6 mm apart also showed decreased MI during VF (0.63 ± 0.13) compared with pacing (1.59 ± 0.34, P < 0.001) or VT (2.05 ± 0.67, P < 0.001). Spatially, Cai waves usually bore no relationship to membrane depolarization waves during nonreentrant fractionated waves typical of VF, whereas they tracked each other closely during pacing and VT. The dominant frequencies of Vm and Cai signals analyzed by fast Fourier transform were similar during VT but differed significantly during VF. Cai is closely associated with Vm closely during pacing and VT but not during VF. These findings suggest that during VF, non-voltage-gated Cai release events occur and may influence wavebreak by altering Vm and APD locally.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 79 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3