Author:
Sun Jie,Li Yiming,Hu Di,Shen Bowen,Zhang Boyang,Wang Zilong,Tang Haiyue,Jiang Anquan
Abstract
Commercial nonvolatile Ferroelectric Random Access Memory employs a destructive readout scheme based on charge sensing, which limits its cell scalability in sizes above 100 nm. Ferroelectric domain walls are two-dimensional topological interfaces with thicknesses approaching the unit cell level between two antiparallel domains and exhibit electrical conductivity, distinguishing them from insulating matrices that are uniformly ordered. Recently, novel research has been devoted to utilizing this extraordinary interface for the application in nonvolatile memory with nanometer-sized scalability and low energy consumption. Here, we pay more attention to the development of the domain wall memory technologies in the future with challenges and opportunities to design planar and vertical arrays of the memory cells in the CMOS platform.
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献