Formation of Peptide Radical Ions through Dissociative Electron Transfer in Ternary Metal—Ligand—Peptide Complexes

Author:

Chu Ivan K.1,Laskin Julia2

Affiliation:

1. Department of Chemistry, The University of Hong Kong, Hong Kong, China

2. Fundamental and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA

Abstract

The formation and fragmentation of odd-electron ions of peptides and proteins is of interest to applications in biological mass spectrometry. Gas-phase redox chemistry occurring during collision-induced dissociation of ternary metal–ligand–peptide complexes enables the formation of a variety of peptide radicals, including the canonical radical cations, M+*, radical dications, [M+H]2+*, radical anions, [M-2H]* and phosphorylated radical cations. In addition, odd-electron peptide ions with well-defined initial location of the radical site are produced through side-chain losses from the radical ions. Subsequent fragmentation of these species provides information regarding the role of charge and location of the radical site on the competition between radical-induced and proton-driven fragmentation of odd-electron peptide ions. This account summarizes current understanding of the factors that control the efficiency of the intramolecular electron transfer (ET) in ternary metal–ligand–peptide complexes resulting in formation of odd-electron peptide ions. Specifically, we discuss the effect of the metal center, the ligand and the peptide structure on the competition between the ET, proton transfer (PT) and loss of neutral peptide and neutral peptide fragments from the complex. Fundamental studies of the structures, stabilities and the energetics and dynamics of fragmentation of these complexes are also important for detailed molecular-level understanding of photosynthesis and respiration in biological systems.

Publisher

SAGE Publications

Subject

Spectroscopy,Atomic and Molecular Physics, and Optics,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3