Affiliation:
1. State Key Laboratory of Chemo/Biosensing & Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
Abstract
Moving window partial least-squares (MWPLS) regression was coupled with near infrared (NIR) spectra as an interval selection method to improve the performance of partial least squares discriminant analysis (PLSDA) models. This method was applied to the identification of artificial bezoar, natural bezoar and artificial bezoar in natural bezoar and compared with some traditional pattern recognition methods, such as principal component analysis (PCA), linear discriminant analysis (LDA) and PLSDA. The introduction of MWPLS enhanced the performance of PLSDA model. The results obtained showed that moving window partial least-squares discriminant analysis (MWPLSDA) can extract wavelength intervals with useful information and build simple yet effective classification models that can significantly improve the classification accuracy. Then MWPLSDA was used to identify natural bezoar by geographical origin; a promising result was achieved. The work showed that MWPLSDA could be a promising method for quality analysis and discrimination of chinese medical herbs according to geographical origin.
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献