Ultraviolet-visible/near infrared spectroscopy and hyperspectral imaging to study the different types of raw cotton

Author:

Al Ktash Mohammad1ORCID,Hauler Otto2ORCID,Ostertag Edwin3ORCID,Brecht Marc4ORCID

Affiliation:

1. Lehr- und Forschungszentrum Process Analysis and Technology (PA&T) der Hochschule Reutlingen, Alteburgstraße 150, 72762 Reutlingen, Germany and IPTC and LISA+ center, University of Eberhard Karls Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany. mohammad.alktash@reutlingen-university.de

2. Lehr- und Forschungszentrum Process Analysis and Technology (PA&T) der Hochschule Reutlingen, Alteburgstraße 150, 72762 Reutlingen, Germany. otto.hauler@reutlingen-university.de

3. Lehr- und Forschungszentrum Process Analysis and Technology (PA&T) der Hochschule Reutlingen, Alteburgstraße 150, 72762 Reutlingen, Germany. edwin.ostertag@reutlingen-university.de

4. Lehr- und Forschungszentrum Process Analysis and Technology (PA&T) der Hochschule Reutlingen, Alteburgstraße 150, 72762 Reutlingen, Germany and IPTC and LISA+ center, University of Eberhard Karls Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany. marc.brecht@reutlingen-university.de

Abstract

Different types of raw cotton were investigated by a commercial ultraviolet-visible/near infrared (UV-Vis/NIR) spectrometer (210–2200 nm) as well as on a home-built setup for NIR hyperspectral imaging (NIR-HSI) in the range 1100–2200 nm. UV-Vis/NIR reflection spectroscopy reveals the dominant role proteins, hydrocarbons and hydroxyl groups play in the structure of cotton. NIR-HSI shows a similar result. Experimentally obtained data in combination with principal component analysis (PCA) provides a general differentiation of different cotton types. For UV-Vis/NIR spectroscopy, the first two principal components (PC) represent 82 % and 78 % of the total data variance for the UV-Vis and NIR regions, respectively. Whereas, for NIR-HSI, due to the large amount of data acquired, two methodologies for data processing were applied in low and high lateral resolution. In the first method, the average of the spectra from one sample was calculated and in the second method the spectra of each pixel were used. Both methods are able to explain ≥90 % of total variance by the first two PCs. The results show that it is possible to distinguish between different cotton types based on a few selected wavelength ranges. The combination of HSI and multivariate data analysis has a strong potential in industrial applications due to its short acquisition time and low-cost development. This study opens a novel possibility for a further development of this technique towards real large-scale processes.

Publisher

IM Publications Open LLP

Subject

Spectroscopy,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3