Analysis of progress in research on technology for the detection and removal of foreign fibers

Author:

Shunqi Mei123,Kai Li1,Xichun Wu1ORCID,Jia Chen1

Affiliation:

1. Hubei Digital Textile Equipment Key Laboratory, Wuhan Textile University, China

2. The Advanced Textile Technology Innovation Center, Jianhu Laboratory, China

3. School of Mechanical and Electrical Engineering, Zhongyuan University of Technology, China

Abstract

We focus in this review on the pre-processing devices used, the cotton pipeline, the rejection system, the acquisition and processing of information from images of raw cotton, and measurements of the rate of dynamic flow of the cotton stream. The results show that raw cotton fluffs into a material with a more uniform thickness, and adequately separating the cotton bunch can improve the subsequent detection and removal of foreign fibers in it. Moreover, research that combines the structure of the cotton pipeline with the optimization of the structure of the nozzle plate is important for improving the rejection of foreign fibers in cotton. Furthermore, a combination of multiple light sources and arrays of charge-coupled device cameras can improve the quality of images of raw cotton, but such key parameters as the power and wavelength of the source of light need to be optimized. As any single algorithm for image segmentation and feature extraction struggles to adapt to the identification of different kinds of foreign fibers, it is important to explore a combination of algorithms to this end, and to develop new techniques of foreign fiber detection based on deep learning. Finally, the structure and parameters of processing of the system for the identification and removal of foreign fibers are important, including the relative distance between the sensor and the nozzle, the width of the detection channel, and the rate of flow of the cotton stream.

Funder

Wuhan Textile University

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3