Word Embedding for the French Natural Language in Health Care: Comparative Study

Author:

Dynomant EmericORCID,Lelong RomainORCID,Dahamna BadisseORCID,Massonnaud ClémentORCID,Kerdelhué GaétanORCID,Grosjean JulienORCID,Canu StéphaneORCID,Darmoni Stefan JORCID

Abstract

Background Word embedding technologies, a set of language modeling and feature learning techniques in natural language processing (NLP), are now used in a wide range of applications. However, no formal evaluation and comparison have been made on the ability of each of the 3 current most famous unsupervised implementations (Word2Vec, GloVe, and FastText) to keep track of the semantic similarities existing between words, when trained on the same dataset. Objective The aim of this study was to compare embedding methods trained on a corpus of French health-related documents produced in a professional context. The best method will then help us develop a new semantic annotator. Methods Unsupervised embedding models have been trained on 641,279 documents originating from the Rouen University Hospital. These data are not structured and cover a wide range of documents produced in a clinical setting (discharge summary, procedure reports, and prescriptions). In total, 4 rated evaluation tasks were defined (cosine similarity, odd one, analogy-based operations, and human formal evaluation) and applied on each model, as well as embedding visualization. Results Word2Vec had the highest score on 3 out of 4 rated tasks (analogy-based operations, odd one similarity, and human validation), particularly regarding the skip-gram architecture. Conclusions Although this implementation had the best rate for semantic properties conservation, each model has its own qualities and defects, such as the training time, which is very short for GloVe, or morphological similarity conservation observed with FastText. Models and test sets produced by this study will be the first to be publicly available through a graphical interface to help advance the French biomedical research.

Publisher

JMIR Publications Inc.

Subject

Health Information Management,Health Informatics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3