Identifying multi-resolution clusters of diseases in ten million patients with multimorbidity in primary care in England

Author:

Beaney ThomasORCID,Clarke JonathanORCID,Salman DavidORCID,Woodcock Thomas,Majeed Azeem,Aylin PaulORCID,Barahona MauricioORCID

Abstract

Abstract Background Identifying clusters of diseases may aid understanding of shared aetiology, management of co-morbidities, and the discovery of new disease associations. Our study aims to identify disease clusters using a large set of long-term conditions and comparing methods that use the co-occurrence of diseases versus methods that use the sequence of disease development in a person over time. Methods We use electronic health records from over ten million people with multimorbidity registered to primary care in England. First, we extract data-driven representations of 212 diseases from patient records employing (i) co-occurrence-based methods and (ii) sequence-based natural language processing methods. Second, we apply the graph-based Markov Multiscale Community Detection (MMCD) to identify clusters based on disease similarity at multiple resolutions. We evaluate the representations and clusters using a clinically curated set of 253 known disease association pairs, and qualitatively assess the interpretability of the clusters. Results Both co-occurrence and sequence-based algorithms generate interpretable disease representations, with the best performance from the skip-gram algorithm. MMCD outperforms k-means and hierarchical clustering in explaining known disease associations. We find that diseases display an almost-hierarchical structure across resolutions from closely to more loosely similar co-occurrence patterns and identify interpretable clusters corresponding to both established and novel patterns. Conclusions Our method provides a tool for clustering diseases at different levels of resolution from co-occurrence patterns in high-dimensional electronic health records, which could be used to facilitate discovery of associations between diseases in the future.

Funder

Wellcome Trust

RCUK | Engineering and Physical Sciences Research Council

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3