Identifying multi-resolution clusters of diseases in ten million patients with multimorbidity in primary care in England

Author:

Beaney ThomasORCID,Clarke JonathanORCID,Salman DavidORCID,Woodcock Thomas,Majeed Azeem,Aylin Paul,Barahona MauricioORCID

Abstract

AbstractIdentifying clusters of co-occurring diseases can aid understanding of shared aetiology, management of co-morbidities, and the discovery of new disease associations. Here, we use data from a population of over ten million people with multimorbidity registered to primary care in England to identify disease clusters through a two-stage process. First, we extract data-driven representations of 212 diseases from patient records employing i) co-occurrence-based methods and ii) sequence-based natural language processing methods. Second, we apply multiscale graph-based clustering to identify clusters based on disease similarity at multiple resolutions, which outperforms k-means and hierarchical clustering in explaining known disease associations. We find that diseases display an almost-hierarchical structure across resolutions from closely to more loosely similar co-occurrence patterns and identify interpretable clusters corresponding to both established and novel patterns. Our method provides a tool for clustering diseases at different levels of resolution from co-occurrence patterns in high-dimensional electronic healthcare record data.

Publisher

Cold Spring Harbor Laboratory

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3