The Adoption of a COVID-19 Contact-Tracing App: Cluster Analysis

Author:

Hengst Tessi MORCID,Lechner LilianORCID,van der Laan Laura NynkeORCID,Hommersom ArjenORCID,Dohmen DaanORCID,Hooft LottyORCID,Metting EstherORCID,Ebbers WolfgangORCID,Bolman Catherine A WORCID

Abstract

Background During the COVID-19 pandemic, there was limited adoption of contact-tracing apps (CTAs). Adoption was particularly low among vulnerable people (eg, people with a low socioeconomic position or of older age), while this part of the population tends to have lesser access to information and communication technology and is more vulnerable to the COVID-19 virus. Objective This study aims to understand the cause of this lagged adoption of CTAs in order to facilitate adoption and find indications to make public health apps more accessible and reduce health disparities. Methods Because several psychosocial variables were found to be predictive of CTA adoption, data from the Dutch CTA CoronaMelder (CM) were analyzed using cluster analysis. We examined whether subgroups could be formed based on 6 psychosocial perceptions (ie, trust in the government, beliefs about personal data, social norms, perceived personal and societal benefits, risk perceptions, and self-efficacy) of (non)users concerning CM in order to examine how these clusters differ from each other and what factors are predictive of the intention to use a CTA and the adoption of a CTA. The intention to use and the adoption of CM were examined based on longitudinal data consisting of 2 time frames in October/November 2020 (N=1900) and December 2020 (N=1594). The clusters were described by demographics, intention, and adoption accordingly. Moreover, we examined whether the clusters and the variables that were found to influence the adoption of CTAs, such as health literacy, were predictive of the intention to use and the adoption of the CM app. Results The final 5-cluster solution based on the data of wave 1 contained significantly different clusters. In wave 1, respondents in the clusters with positive perceptions (ie, beneficial psychosocial variables for adoption of a CTA) about the CM app were older (P<.001), had a higher education level (P<.001), and had higher intention (P<.001) and adoption (P<.001) rates than those in the clusters with negative perceptions. In wave 2, the intention to use and adoption were predicted by the clusters. The intention to use CM in wave 2 was also predicted using the adoption measured in wave 1 (P<.001, β=–2.904). Adoption in wave 2 was predicted by age (P=.022, exp(B)=1.171), the intention to use in wave 1 (P<.001, exp(B)=1.770), and adoption in wave 1 (P<.001, exp(B)=0.043). Conclusions The 5 clusters, as well as age and previous behavior, were predictive of the intention to use and the adoption of the CM app. Through the distinguishable clusters, insight was gained into the profiles of CM (non)intenders and (non)adopters. Trial Registration OSF Registries osf.io/cq742; https://osf.io/cq742

Publisher

JMIR Publications Inc.

Subject

Health Informatics,Medicine (miscellaneous)

Reference35 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3