Peer-to-Peer Contact Tracing: Development of a Privacy-Preserving Smartphone App

Author:

Yasaka Tyler MORCID,Lehrich Brandon MORCID,Sahyouni RonaldORCID

Abstract

Background The novel coronavirus disease 2019 (COVID-19) pandemic is an urgent public health crisis, with epidemiologic models predicting severe consequences, including high death rates, if the virus is permitted to run its course without any intervention or response. Contact tracing using smartphone technology is a powerful tool that may be employed to limit disease transmission during an epidemic or pandemic; yet, contact tracing apps present significant privacy concerns regarding the collection of personal data such as location. Objective The aim of this study is to develop an effective contact tracing smartphone app that respects user privacy by not collecting location information or other personal data. Methods We propose the use of an anonymized graph of interpersonal interactions to conduct a novel form of contact tracing and have developed a proof-of-concept smartphone app that implements this approach. Additionally, we developed a computer simulation model that demonstrates the impact of our proposal on epidemic or pandemic outbreak trajectories across multiple rates of adoption. Results Our proof-of-concept smartphone app allows users to create “checkpoints” for contact tracing, check their risk level based on their past interactions, and anonymously self-report a positive status to their peer network. Our simulation results suggest that higher adoption rates of such an app may result in a better controlled epidemic or pandemic outbreak. Conclusions Our proposed smartphone-based contact tracing method presents a novel solution that preserves privacy while demonstrating the potential to suppress an epidemic or pandemic outbreak. This app could potentially be applied to the current COVID-19 pandemic as well as other epidemics or pandemics in the future to achieve a middle ground between drastic isolation measures and unmitigated disease spread.

Publisher

JMIR Publications Inc.

Subject

Health Informatics

Cited by 173 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3