Community-Based Digital Contact Tracing of Emerging Infectious Diseases: Design and Implementation Study With Empirical COVID-19 Cases

Author:

Wang Hsiao-ChiORCID,Lin Ting-YuORCID,Yao Yu-ChinORCID,Hsu Chen-YangORCID,Yang Chang-JungORCID,Chen Tony Hsiu-HsiORCID,Yeh Yen-PoORCID

Abstract

Background Contact tracing for containing emerging infectious diseases such as COVID-19 is resource intensive and requires digital transformation to enable timely decision-making. Objective This study demonstrates the design and implementation of digital contact tracing using multimodal health informatics to efficiently collect personal information and contain community outbreaks. The implementation of digital contact tracing was further illustrated by 3 empirical SARS-CoV-2 infection clusters. Methods The implementation in Changhua, Taiwan, served as a demonstration of the multisectoral informatics and connectivity between electronic health systems needed for digital contact tracing. The framework incorporates traditional travel, occupation, contact, and cluster approaches and a dynamic contact process enabled by digital technology. A centralized registry system, accessible only to authorized health personnel, ensures privacy and data security. The efficiency of the digital contact tracing system was evaluated through a field study in Changhua. Results The digital contact tracing system integrates the immigration registry, communicable disease report system, and national health records to provide real-time information about travel, occupation, contact, and clusters for potential contacts and to facilitate a timely assessment of the risk of COVID-19 transmission. The digitalized system allows for informed decision-making regarding quarantine, isolation, and treatment, with a focus on personal privacy. In the first cluster infection, the system monitored 665 contacts and isolated 4 (0.6%) cases; none of the contacts (0/665, 0%) were infected during quarantine. The estimated reproduction number of 0.92 suggests an effective containment strategy for preventing community-acquired outbreak. The system was also used in a cluster investigation involving foreign workers, where none of the 462 contacts (0/462, 0%) tested positive for SARS-CoV-2. Conclusions By integrating the multisectoral database, the contact tracing process can be digitalized to provide the information required for risk assessment and decision-making in a timely manner to contain a community-acquired outbreak when facing the outbreak of emerging infectious disease.

Publisher

JMIR Publications Inc.

Subject

Health Informatics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3