Performance of Large Language Models in Patient Complaint Resolution: Web-Based Cross-Sectional Survey

Author:

Yong Lorraine Pei XianORCID,Tung Joshua Yi MinORCID,Lee Zi YaoORCID,Kuan Win SenORCID,Chua Mui TengORCID

Abstract

Background Patient complaints are a perennial challenge faced by health care institutions globally, requiring extensive time and effort from health care workers. Despite these efforts, patient dissatisfaction remains high. Recent studies on the use of large language models (LLMs) such as the GPT models developed by OpenAI in the health care sector have shown great promise, with the ability to provide more detailed and empathetic responses as compared to physicians. LLMs could potentially be used in responding to patient complaints to improve patient satisfaction and complaint response time. Objective This study aims to evaluate the performance of LLMs in addressing patient complaints received by a tertiary health care institution, with the goal of enhancing patient satisfaction. Methods Anonymized patient complaint emails and associated responses from the patient relations department were obtained. ChatGPT-4.0 (OpenAI, Inc) was provided with the same complaint email and tasked to generate a response. The complaints and the respective responses were uploaded onto a web-based questionnaire. Respondents were asked to rate both responses on a 10-point Likert scale for 4 items: appropriateness, completeness, empathy, and satisfaction. Participants were also asked to choose a preferred response at the end of each scenario. Results There was a total of 188 respondents, of which 115 (61.2%) were health care workers. A majority of the respondents, including both health care and non–health care workers, preferred replies from ChatGPT (n=164, 87.2% to n=183, 97.3%). GPT-4.0 responses were rated higher in all 4 assessed items with all median scores of 8 (IQR 7-9) compared to human responses (appropriateness 5, IQR 3-7; empathy 4, IQR 3-6; quality 5, IQR 3-6; satisfaction 5, IQR 3-6; P<.001) and had higher average word counts as compared to human responses (238 vs 76 words). Regression analyses showed that a higher word count was a statistically significant predictor of higher score in all 4 items, with every 1-word increment resulting in an increase in scores of between 0.015 and 0.019 (all P<.001). However, on subgroup analysis by authorship, this only held true for responses written by patient relations department staff and not those generated by ChatGPT which received consistently high scores irrespective of response length. Conclusions This study provides significant evidence supporting the effectiveness of LLMs in resolution of patient complaints. ChatGPT demonstrated superiority in terms of response appropriateness, empathy, quality, and overall satisfaction when compared against actual human responses to patient complaints. Future research can be done to measure the degree of improvement that artificial intelligence generated responses can bring in terms of time savings, cost-effectiveness, patient satisfaction, and stress reduction for the health care system.

Publisher

JMIR Publications Inc.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3