Clinical Annotation Research Kit (CLARK): Computable Phenotyping Using Machine Learning

Author:

Pfaff Emily RORCID,Crosskey MilesORCID,Morton KennethORCID,Krishnamurthy AshokORCID

Abstract

Computable phenotypes are algorithms that translate clinical features into code that can be run against electronic health record (EHR) data to define patient cohorts. However, computable phenotypes that only make use of structured EHR data do not capture the full richness of a patient’s medical record. While natural language processing (NLP) methods have shown success in extracting clinical features from text, the use of such tools has generally been limited to research groups with substantial NLP expertise. Our goal was to develop an open-source phenotyping software, Clinical Annotation Research Kit (CLARK), that would enable clinical and translational researchers to use machine learning–based NLP for computable phenotyping without requiring deep informatics expertise. CLARK enables nonexpert users to mine text using machine learning classifiers by specifying features for the software to match in clinical notes. Once the features are defined, the user-friendly CLARK interface allows the user to choose from a variety of standard machine learning algorithms (linear support vector machine, Gaussian Naïve Bayes, decision tree, and random forest), cross-validation methods, and the number of folds (cross-validation splits) to be used in evaluation of the classifier. Example phenotypes where CLARK has been applied include pediatric diabetes (sensitivity=0.91; specificity=0.98), symptomatic uterine fibroids (positive predictive value=0.81; negative predictive value=0.54), nonalcoholic fatty liver disease (sensitivity=0.90; specificity=0.94), and primary ciliary dyskinesia (sensitivity=0.88; specificity=1.0). In each of these use cases, CLARK allowed investigators to incorporate variables into their phenotype algorithm that would not be available as structured data. Moreover, the fact that nonexpert users can get started with machine learning–based NLP with limited informatics involvement is a significant improvement over the status quo. We hope to disseminate CLARK to other organizations that may not have NLP or machine learning specialists available, enabling wider use of these methods.

Publisher

JMIR Publications Inc.

Subject

Health Information Management,Health Informatics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3