Leveraging Open Electronic Health Record Data and Environmental Exposures Data to Derive Insights Into Rare Pulmonary Disease

Author:

Fecho Karamarie,Ahalt Stanley C.,Knowles Michael,Krishnamurthy Ashok,Leigh Margaret,Morton Kenneth,Pfaff Emily,Wang Max,Yi Hong

Abstract

Research on rare diseases has received increasing attention, in part due to the realized profitability of orphan drugs. Biomedical informatics holds promise in accelerating translational research on rare disease, yet challenges remain, including the lack of diagnostic codes for rare diseases and privacy concerns that prevent research access to electronic health records when few patients exist. The Integrated Clinical and Environmental Exposures Service (ICEES) provides regulatory-compliant open access to electronic health record data that have been integrated with environmental exposures data, as well as analytic tools to explore the integrated data. We describe a proof-of-concept application of ICEES to examine demographics, clinical characteristics, environmental exposures, and health outcomes among a cohort of patients enriched for phenotypes associated with cystic fibrosis (CF), idiopathic bronchiectasis (IB), and primary ciliary dyskinesia (PCD). We then focus on a subset of patients with CF, leveraging the availability of a diagnostic code for CF and serving as a benchmark for our development work. We use ICEES to examine select demographics, co-diagnoses, and environmental exposures that may contribute to poor health outcomes among patients with CF, defined as emergency department or inpatient visits for respiratory issues. We replicate current understanding of the pathogenesis and clinical manifestations of CF by identifying co-diagnoses of asthma, chronic nasal congestion, cough, middle ear disease, and pneumonia as factors that differentiate patients with poor health outcomes from those with better health outcomes. We conclude by discussing our preliminary findings in relation to other published work, the strengths and limitations of our approach, and our future directions.

Funder

National Center for Advancing Translational Sciences

Publisher

Frontiers Media SA

Subject

Artificial Intelligence

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3