Detecting rare diseases in electronic health records using machine learning and knowledge engineering: Case study of acute hepatic porphyria
Author:
Funder
Alnylam Pharmaceuticals
Publisher
Public Library of Science (PLoS)
Subject
Multidisciplinary
Reference25 articles.
1. Clinical data reuse or secondary use: current status and potential future progress;SM Meystre;Yearbook of medical informatics,2017
2. How many rare diseases are there?;M Haendel;Nat Rev Drug Discov,2020
3. General knowledge and opinion of future health care and non-health care professionals on rare diseases;E Ramalle-Gómara;J Eval Clin Pract,2015
4. Garg R, Dong S, Shah S, Jonnalagadda SR. A bootstrap machine learning approach to identify rare disease patients from electronic health records. arXiv preprint arXiv:160901586. 2016.
5. Colbaugh R, Glass K, Rudolf C, Global MTV. Learning to Identify Rare Disease Patients from Electronic Health Records. In: AMIA Annual Symposium Proceedings. American Medical Informatics Association; 2018. p. 340.
Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Machine learning characterization of a rare neurologic disease via electronic health records: a proof-of-principle study on stiff person syndrome;BMC Neurology;2024-08-03
2. Reducing diagnostic delays in acute hepatic porphyria using health records data and machine learning;Journal of the American Medical Informatics Association;2024-07-01
3. Objectivizing issues in the diagnosis of complex rare diseases: lessons learned from testing existing diagnosis support systems on ciliopathies;BMC Medical Informatics and Decision Making;2024-05-24
4. Performance and clinical utility of a new supervised machine-learning pipeline in detecting rare ciliopathy patients based on deep phenotyping from electronic health records and semantic similarity;Orphanet Journal of Rare Diseases;2024-02-10
5. Integrating Multi-Omics Data With EHR for Precision Medicine Using Advanced Artificial Intelligence;IEEE Reviews in Biomedical Engineering;2024
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3