Machine learning characterization of a rare neurologic disease via electronic health records: a proof-of-principle study on stiff person syndrome

Author:

Park Soo Hwan,Song Seo Ho,Burton Frederick,Arsan Cybèle,Jobst Barbara,Feldman Mary

Abstract

Abstract Background Despite the frequent diagnostic delays of rare neurologic diseases (RND), it remains difficult to study RNDs and their comorbidities due to their rarity and hence the statistical underpowering. Affecting one to two in a million annually, stiff person syndrome (SPS) is an RND characterized by painful muscle spasms and rigidity. Leveraging underutilized electronic health records (EHR), this study showcased a machine-learning-based framework to identify clinical features that optimally characterize the diagnosis of SPS. Methods A machine-learning-based feature selection approach was employed on 319 items from the past medical histories of 48 individuals (23 with a diagnosis of SPS and 25 controls) with elevated serum autoantibodies against glutamic-acid-decarboxylase-65 (anti-GAD65) in Dartmouth Health’s EHR to determine features with the highest discriminatory power. Each iteration of the algorithm implemented a Support Vector Machine (SVM) model, generating importance scores—SHapley Additive exPlanation (SHAP) values—for each feature and removing one with the least salient. Evaluation metrics were calculated through repeated stratified cross-validation. Results Depression, hypothyroidism, GERD, and joint pain were the most characteristic features of SPS. Utilizing these features, the SVM model attained precision of 0.817 (95% CI 0.795–0.840), sensitivity of 0.766 (95% CI 0.743–0.790), F-score of 0.761 (95% CI 0.744–0.778), AUC of 0.808 (95% CI 0.791–0.825), and accuracy of 0.775 (95% CI 0.759–0.790). Conclusions This framework discerned features that, with further research, may help fully characterize the pathologic mechanism of SPS: depression, hypothyroidism, and GERD may respectively represent comorbidities through common inflammatory, genetic, and dysautonomic links. This methodology could address diagnostic challenges in neurology by uncovering latent associations and generating hypotheses for RNDs.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3