Synthetic Tabular Data Based on Generative Adversarial Networks in Health Care: Generation and Validation Using the Divide-and-Conquer Strategy

Author:

Kang Ha Ye JinORCID,Batbaatar ErdenebilegORCID,Choi Dong-WooORCID,Choi Kui SonORCID,Ko MinsamORCID,Ryu Kwang SunORCID

Abstract

Background Synthetic data generation (SDG) based on generative adversarial networks (GANs) is used in health care, but research on preserving data with logical relationships with synthetic tabular data (STD) remains challenging. Filtering methods for SDG can lead to the loss of important information. Objective This study proposed a divide-and-conquer (DC) method to generate STD based on the GAN algorithm, while preserving data with logical relationships. Methods The proposed method was evaluated on data from the Korea Association for Lung Cancer Registry (KALC-R) and 2 benchmark data sets (breast cancer and diabetes). The DC-based SDG strategy comprises 3 steps: (1) We used 2 different partitioning methods (the class-specific criterion distinguished between survival and death groups, while the Cramer V criterion identified the highest correlation between columns in the original data); (2) the entire data set was divided into a number of subsets, which were then used as input for the conditional tabular generative adversarial network and the copula generative adversarial network to generate synthetic data; and (3) the generated synthetic data were consolidated into a single entity. For validation, we compared DC-based SDG and conditional sampling (CS)–based SDG through the performances of machine learning models. In addition, we generated imbalanced and balanced synthetic data for each of the 3 data sets and compared their performance using 4 classifiers: decision tree (DT), random forest (RF), Extreme Gradient Boosting (XGBoost), and light gradient-boosting machine (LGBM) models. Results The synthetic data of the 3 diseases (non–small cell lung cancer [NSCLC], breast cancer, and diabetes) generated by our proposed model outperformed the 4 classifiers (DT, RF, XGBoost, and LGBM). The CS- versus DC-based model performances were compared using the mean area under the curve (SD) values: 74.87 (SD 0.77) versus 63.87 (SD 2.02) for NSCLC, 73.31 (SD 1.11) versus 67.96 (SD 2.15) for breast cancer, and 61.57 (SD 0.09) versus 60.08 (SD 0.17) for diabetes (DT); 85.61 (SD 0.29) versus 79.01 (SD 1.20) for NSCLC, 78.05 (SD 1.59) versus 73.48 (SD 4.73) for breast cancer, and 59.98 (SD 0.24) versus 58.55 (SD 0.17) for diabetes (RF); 85.20 (SD 0.82) versus 76.42 (SD 0.93) for NSCLC, 77.86 (SD 2.27) versus 68.32 (SD 2.37) for breast cancer, and 60.18 (SD 0.20) versus 58.98 (SD 0.29) for diabetes (XGBoost); and 85.14 (SD 0.77) versus 77.62 (SD 1.85) for NSCLC, 78.16 (SD 1.52) versus 70.02 (SD 2.17) for breast cancer, and 61.75 (SD 0.13) versus 61.12 (SD 0.23) for diabetes (LGBM). In addition, we found that balanced synthetic data performed better. Conclusions This study is the first attempt to generate and validate STD based on a DC approach and shows improved performance using STD. The necessity for balanced SDG was also demonstrated.

Publisher

JMIR Publications Inc.

Subject

Health Information Management,Health Informatics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3