Generative adversarial networks

Author:

Goodfellow Ian1,Pouget-Abadie Jean2,Mirza Mehdi2,Xu Bing2,Warde-Farley David2,Ozair Sherjil2,Courville Aaron2,Bengio Yoshua2

Affiliation:

1. Google Brain

2. Université de Montréal

Abstract

Generative adversarial networks are a kind of artificial intelligence algorithm designed to solve the generative modeling problem. The goal of a generative model is to study a collection of training examples and learn the probability distribution that generated them. Generative Adversarial Networks (GANs) are then able to generate more examples from the estimated probability distribution. Generative models based on deep learning are common, but GANs are among the most successful generative models (especially in terms of their ability to generate realistic high-resolution images). GANs have been successfully applied to a wide variety of tasks (mostly in research settings) but continue to present unique challenges and research opportunities because they are based on game theory while most other approaches to generative modeling are based on optimization.

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science

Reference35 articles.

1. Brundage M. Avin S. Clark J. Toner H. Eckersley P. Garfinkel B. Dafoe A. Scharre P. Zeitzoff T. Filar B. Anderson H. Roff H. Allen G.C. Steinhardt J. Flynn C. hÉigeartaigh S.Ó. Beard S. Belfield H. Farquhar S. Lyle C. Crootof R. Evans O. Page M. Bryson J. Yampolskiy R. Amodei D. The Malicious Use of Artificial Intelligence: Forecasting Prevention and Mitigation. ArXiv e-prints (Feb. 2018). Brundage M. Avin S. Clark J. Toner H. Eckersley P. Garfinkel B. Dafoe A. Scharre P. Zeitzoff T. Filar B. Anderson H. Roff H. Allen G.C. Steinhardt J. Flynn C. hÉigeartaigh S.Ó. Beard S. Belfield H. Farquhar S. Lyle C. Crootof R. Evans O. Page M. Bryson J. Yampolskiy R. Amodei D. The Malicious Use of Artificial Intelligence: Forecasting Prevention and Mitigation. ArXiv e-prints (Feb. 2018).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3