Generating Synthetic ECGs Using GANs for Anonymizing Healthcare Data

Author:

Piacentino EstebanORCID,Guarner AlvaroORCID,Angulo CecilioORCID

Abstract

In personalized healthcare, an ecosystem for the manipulation of reliable and safe private data should be orchestrated. This paper describes an approach for the generation of synthetic electrocardiograms (ECGs) based on Generative Adversarial Networks (GANs) with the objective of anonymizing users’ information for privacy issues. This is intended to create valuable data that can be used both in educational and research areas, while avoiding the risk of a sensitive data leakage. As GANs are mainly exploited on images and video frames, we are proposing general raw data processing after transformation into an image, so it can be managed through a GAN, then decoded back to the original data domain. The feasibility of our transformation and processing hypothesis is primarily demonstrated. Next, from the proposed procedure, main drawbacks for each step in the procedure are addressed for the particular case of ECGs. Hence, a novel research pathway on health data anonymization using GANs is opened and further straightforward developments are expected.

Funder

Ministerio de Ciencia, Innovación y Universidades

European Regional Development Funds

Horizon 2020

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference22 articles.

1. Low Energy Physical Activity Recognition System on Smartphones

2. Towards a Healthcare Digital Twin;Angulo,2019

3. Digital Twins in Health Care: Ethical Implications of an Emerging Engineering Paradigm

4. Anonymizing Health Data: Case Studies and Methods to Get You Started;El Emam,2013

5. Learning Anonymized Representations with Adversarial Neural Networks;Feutry;arXiv,2018

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3