Inhibition of viral replication by nitric oxide and its reversal by ferrous sulfate and tricarboxylic acid cycle metabolites.

Author:

Karupiah G1,Harris N1

Affiliation:

1. Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA.

Abstract

IFN-gamma-induced nitric oxide (NO) in the murine macrophage-derived cell line RAW 264.7 was previously shown to inhibit replication of the poxviruses ectromelia and vaccinia (VV) and HSV-1. In the current study we demonstrate that murine macrophages activated as a consequence of VV infection express inducible nitric oxide synthase. These activated macrophages were resistant to infection with VV and efficiently blocked the replication of VV and HSV-1 in infected bystander cells of epithelial and fibroblast origin. This inhibition was arginine dependent, correlated with nitrite production in cultures, and reversible by the NOS inhibitor N omega-monomethyl-L-arginine. NO-mediated inhibition of VV replication was studied by treatment of virus-infected human 293 cells with the NO donor S-nitroso-N-acetyl-penicillamine. Using a VV-specific DNA probe, antibodies specific for temporally expressed viral proteins, and transmission electron microscopy, we have shown that NO inhibited viral late gene protein synthesis, DNA replication, and virus particle formation, but not expression of the early proteins that were analyzed. Putative enzymatic targets of NO were identified by reversing the NO-mediated inhibition of VV replication in the 293 cells with exogenous ferrous sulfate and L-cysteine. Reversal of inhibition may derive from the capacity of these reagents to protect or regenerate nonheme iron or thiol groups, respectively, which are essential for the catalytic activities of enzymes susceptible to inactivation by NO.

Publisher

Rockefeller University Press

Subject

Immunology,Immunology and Allergy

Cited by 97 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3